January  2015, 2(1): 65-81. doi: 10.3934/jcd.2015.2.65

Numerical event-based ISS controller design via a dynamic game approach

1. 

University of Bayreuth, Chair of Applied Mathematics, Universitätsstraße 30, 95440 Bayreuth

2. 

University of Bayreuth, Chair of Applied Mathematics, Universitãtsstraße 30, 95440 Bayreuth, Germany

Received  April 2014 Revised  January 2015 Published  August 2015

We present an event-based numerical design method for an input-to-state practically stabilizing (ISpS) state feedback controller for perturbed nonlinear discrete time systems. The controllers are designed to be constant on quantization regions which are not assumed to be small. A transition of the state from one quantization region to another triggers an event upon which the control value changes.
    The controller construction relies on the conversion of the ISpS design problem into a robust controller design problem which is solved by a set oriented discretization technique followed by the solution of a dynamic game on a hypergraph. We present and analyze this approach with a particular focus on keeping track of the quantitative dependence of the resulting gain and the size of the exceptional region for practical stability from the design parameters of our event-based controller.
Citation: Lars Grüne, Manuela Sigurani. Numerical event-based ISS controller design via a dynamic game approach. Journal of Computational Dynamics, 2015, 2 (1) : 65-81. doi: 10.3934/jcd.2015.2.65
References:
[1]

K. Arzén, A simple event-based PID controller,, in Proc. 14th IFAC World Congress, (1999), 423.   Google Scholar

[2]

K. J. Åström and B. Bernhardsson, Comparison of periodic and event-based sampling for first-order stochastic systems,, in Proc. 14th IFAC World Congress, (1999), 301.   Google Scholar

[3]

M. Bardi and J. P. Maldonado López, A Dijkstra-type algorithm for dynamic games, Dynamic Games and Applications,, Springer US, (2015), 1.  doi: 10.1007/s13235-015-0156-0.  Google Scholar

[4]

C. De Persis, R. Sailer and F. Wirth, On a small-gain approach to distributed event-triggered control,, in Proc. 14th IFAC World Congress, (2011), 2401.   Google Scholar

[5]

M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations,, SIAM, (2014).   Google Scholar

[6]

P. J. Gawthrop and L. B. Wang, Event-driven intermittent control,, International Journal of Control, 82 (2009), 2235.  doi: 10.1080/00207170902978115.  Google Scholar

[7]

P. Giesl and S. Hafstein, Existence of piecewise linear Lyapunov functions in arbitrary dimensions,, Discrete Contin. Dyn. Syst., 32 (2012), 3539.  doi: 10.3934/dcds.2012.32.3539.  Google Scholar

[8]

P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions, vol. 1904 of Lecture Notes in Mathematics,, Springer, (2007).   Google Scholar

[9]

L. Grüne, S. Jerg, O. Junge, D. Lehmann, J. Lunze, F. Müller and M. Post, Two complementary approaches to event-based control,, at-Automatisierungstechnik (Special Issue on Networked Control Systems), 58 (2010), 173.   Google Scholar

[10]

L. Grüne and O. Junge, A set oriented approach to optimal feedback stabilization,, Systems Control Lett., 54 (2005), 169.  doi: 10.1016/j.sysconle.2004.08.005.  Google Scholar

[11]

L. Grüne and O. Junge, Approximately optimal nonlinear stabilization with preservation of the Lyapunov function property,, in Proceedings of the 46th IEEE Conference on Decision and Control, (2007), 702.   Google Scholar

[12]

L. Grüne and O. Junge, Global optimal control of perturbed systems,, J. Optim. Theory Appl., 136 (2008), 411.  doi: 10.1007/s10957-007-9312-z.  Google Scholar

[13]

L. Grüne and C. Kellet, ISS-Lyapunov functions for discontinuous discrete-time systems,, IEEE Trans. Autom. Control, 59 (2014), 3098.  doi: 10.1109/TAC.2014.2321667.  Google Scholar

[14]

L. Grüne and F. Müller, Set oriented optimal control using past information,, in Proc. 18th International Symposium on Mathematical Theory of Networks and Systems (MTNS2008), (2008).   Google Scholar

[15]

L. Grüne and F. Müller, An algorithm for event-based optimal feedback control,, in Proceedings of the 48th IEEE Conference on Decision and Control, (2009), 5311.   Google Scholar

[16]

L. Grüne and M. Sigurani, Numerical ISS controller design via a dynamic game approach,, in Proceedings of the 52nd IEEE Conference on Decision and Control, (2013), 1732.   Google Scholar

[17]

S. F. Hafstein, An Algorithm for Constructing Lyapunov Functions, vol. 8 of Electronic Journal of Differential Equations. Monograph,, Texas State University-San Marcos, (2007).   Google Scholar

[18]

Z.-P. Jiang and Y. Wang, Input-to-state stability for discrete-time nonlinear systems,, Automatica, 37 (2001), 857.  doi: 10.1016/S0005-1098(01)00028-0.  Google Scholar

[19]

Z.-P. Jiang and Y. Wang, A converse Lyapunov theorem for discrete-time systems with disturbances,, Systems Control Lett., 45 (2002), 49.  doi: 10.1016/S0167-6911(01)00164-5.  Google Scholar

[20]

O. Junge and H. M. Osinga, A set oriented approach to global optimal control,, ESAIM Control Optim. Calc. Var., 10 (2004), 259.  doi: 10.1051/cocv:2004006.  Google Scholar

[21]

J. Lunze (ed.), Control Theory of Digitally Networked Systems,, Springer, (2014).  doi: 10.1007/978-3-319-01131-8.  Google Scholar

[22]

J. Lunze and D. Lehmann, A state-feedback approach to event-based control,, Automatica, 46 (2010), 211.  doi: 10.1016/j.automatica.2009.10.035.  Google Scholar

[23]

M. Mazo and P. Tabuada, Decentralized event-triggered control over wireless sensor/actuator networks,, IEEE Trans. Autom. Control, 56 (2010), 2456.  doi: 10.1109/TAC.2011.2164036.  Google Scholar

[24]

M. Sigurani, C. Stöcker, L. Grüne and J. Lunze, Experimental evaluation of two complementary decentralized event-based control methods,, Control Eng. Practice, 35 (2015), 22.  doi: 10.1016/j.conengprac.2014.10.002.  Google Scholar

[25]

P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks,, IEEE Trans. Autom. Control, 52 (2007), 1680.  doi: 10.1109/TAC.2007.904277.  Google Scholar

[26]

M. von Lossow, A min-max version of Dijkstra's algorithm with application to perturbed optimal control problems,, in Proc. Appl. Math. Mech. (PAMM), 7 (2007), 4130027.  doi: 10.1002/pamm.200700646.  Google Scholar

[27]

X. Wang and M. D. Lemmon, Attentively efficient controllers for event-triggered feedback systems,, in Proc. 50th IEEE Conference on Decision and Control and European Control Conference, (2011), 4698.  doi: 10.1109/CDC.2011.6160699.  Google Scholar

[28]

X. Wang and M. D. Lemmon, On event design in event-triggered feedback systems,, Automatica, 47 (2011), 2319.  doi: 10.1016/j.automatica.2011.05.027.  Google Scholar

[29]

H. Yu and P. J. Antsaklis, Event-triggered real-time scheduling for stabilization of passive and output feedback passive systems,, in Proc. American Control Conference, (2011), 1674.   Google Scholar

show all references

References:
[1]

K. Arzén, A simple event-based PID controller,, in Proc. 14th IFAC World Congress, (1999), 423.   Google Scholar

[2]

K. J. Åström and B. Bernhardsson, Comparison of periodic and event-based sampling for first-order stochastic systems,, in Proc. 14th IFAC World Congress, (1999), 301.   Google Scholar

[3]

M. Bardi and J. P. Maldonado López, A Dijkstra-type algorithm for dynamic games, Dynamic Games and Applications,, Springer US, (2015), 1.  doi: 10.1007/s13235-015-0156-0.  Google Scholar

[4]

C. De Persis, R. Sailer and F. Wirth, On a small-gain approach to distributed event-triggered control,, in Proc. 14th IFAC World Congress, (2011), 2401.   Google Scholar

[5]

M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations,, SIAM, (2014).   Google Scholar

[6]

P. J. Gawthrop and L. B. Wang, Event-driven intermittent control,, International Journal of Control, 82 (2009), 2235.  doi: 10.1080/00207170902978115.  Google Scholar

[7]

P. Giesl and S. Hafstein, Existence of piecewise linear Lyapunov functions in arbitrary dimensions,, Discrete Contin. Dyn. Syst., 32 (2012), 3539.  doi: 10.3934/dcds.2012.32.3539.  Google Scholar

[8]

P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions, vol. 1904 of Lecture Notes in Mathematics,, Springer, (2007).   Google Scholar

[9]

L. Grüne, S. Jerg, O. Junge, D. Lehmann, J. Lunze, F. Müller and M. Post, Two complementary approaches to event-based control,, at-Automatisierungstechnik (Special Issue on Networked Control Systems), 58 (2010), 173.   Google Scholar

[10]

L. Grüne and O. Junge, A set oriented approach to optimal feedback stabilization,, Systems Control Lett., 54 (2005), 169.  doi: 10.1016/j.sysconle.2004.08.005.  Google Scholar

[11]

L. Grüne and O. Junge, Approximately optimal nonlinear stabilization with preservation of the Lyapunov function property,, in Proceedings of the 46th IEEE Conference on Decision and Control, (2007), 702.   Google Scholar

[12]

L. Grüne and O. Junge, Global optimal control of perturbed systems,, J. Optim. Theory Appl., 136 (2008), 411.  doi: 10.1007/s10957-007-9312-z.  Google Scholar

[13]

L. Grüne and C. Kellet, ISS-Lyapunov functions for discontinuous discrete-time systems,, IEEE Trans. Autom. Control, 59 (2014), 3098.  doi: 10.1109/TAC.2014.2321667.  Google Scholar

[14]

L. Grüne and F. Müller, Set oriented optimal control using past information,, in Proc. 18th International Symposium on Mathematical Theory of Networks and Systems (MTNS2008), (2008).   Google Scholar

[15]

L. Grüne and F. Müller, An algorithm for event-based optimal feedback control,, in Proceedings of the 48th IEEE Conference on Decision and Control, (2009), 5311.   Google Scholar

[16]

L. Grüne and M. Sigurani, Numerical ISS controller design via a dynamic game approach,, in Proceedings of the 52nd IEEE Conference on Decision and Control, (2013), 1732.   Google Scholar

[17]

S. F. Hafstein, An Algorithm for Constructing Lyapunov Functions, vol. 8 of Electronic Journal of Differential Equations. Monograph,, Texas State University-San Marcos, (2007).   Google Scholar

[18]

Z.-P. Jiang and Y. Wang, Input-to-state stability for discrete-time nonlinear systems,, Automatica, 37 (2001), 857.  doi: 10.1016/S0005-1098(01)00028-0.  Google Scholar

[19]

Z.-P. Jiang and Y. Wang, A converse Lyapunov theorem for discrete-time systems with disturbances,, Systems Control Lett., 45 (2002), 49.  doi: 10.1016/S0167-6911(01)00164-5.  Google Scholar

[20]

O. Junge and H. M. Osinga, A set oriented approach to global optimal control,, ESAIM Control Optim. Calc. Var., 10 (2004), 259.  doi: 10.1051/cocv:2004006.  Google Scholar

[21]

J. Lunze (ed.), Control Theory of Digitally Networked Systems,, Springer, (2014).  doi: 10.1007/978-3-319-01131-8.  Google Scholar

[22]

J. Lunze and D. Lehmann, A state-feedback approach to event-based control,, Automatica, 46 (2010), 211.  doi: 10.1016/j.automatica.2009.10.035.  Google Scholar

[23]

M. Mazo and P. Tabuada, Decentralized event-triggered control over wireless sensor/actuator networks,, IEEE Trans. Autom. Control, 56 (2010), 2456.  doi: 10.1109/TAC.2011.2164036.  Google Scholar

[24]

M. Sigurani, C. Stöcker, L. Grüne and J. Lunze, Experimental evaluation of two complementary decentralized event-based control methods,, Control Eng. Practice, 35 (2015), 22.  doi: 10.1016/j.conengprac.2014.10.002.  Google Scholar

[25]

P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks,, IEEE Trans. Autom. Control, 52 (2007), 1680.  doi: 10.1109/TAC.2007.904277.  Google Scholar

[26]

M. von Lossow, A min-max version of Dijkstra's algorithm with application to perturbed optimal control problems,, in Proc. Appl. Math. Mech. (PAMM), 7 (2007), 4130027.  doi: 10.1002/pamm.200700646.  Google Scholar

[27]

X. Wang and M. D. Lemmon, Attentively efficient controllers for event-triggered feedback systems,, in Proc. 50th IEEE Conference on Decision and Control and European Control Conference, (2011), 4698.  doi: 10.1109/CDC.2011.6160699.  Google Scholar

[28]

X. Wang and M. D. Lemmon, On event design in event-triggered feedback systems,, Automatica, 47 (2011), 2319.  doi: 10.1016/j.automatica.2011.05.027.  Google Scholar

[29]

H. Yu and P. J. Antsaklis, Event-triggered real-time scheduling for stabilization of passive and output feedback passive systems,, in Proc. American Control Conference, (2011), 1674.   Google Scholar

[1]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[2]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[3]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[4]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[7]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[8]

Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2021, 17 (1) : 447-465. doi: 10.3934/jimo.2019120

[9]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[10]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[11]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[12]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[13]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[14]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[15]

Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128

[16]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[17]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[18]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[19]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[20]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

 Impact Factor: 

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]