January  2015, 2(1): 83-93. doi: 10.3934/jcd.2015.2.83

Attraction-based computation of hyperbolic Lagrangian coherent structures

1. 

ETH Zürich, Institute of Mechanical Systems, Leonhardstrasse 21, 8092 Zürich, Switzerland, Switzerland

2. 

ETH Zürich, Institute of Mechanical Systems, Rämistrasse 101, 8092 Zürich, Switzerland

Received  May 2014 Revised  October 2014 Published  August 2015

Recent advances enable the simultaneous computation of both attracting and repelling families of Lagrangian Coherent Structures (LCS) at the same initial or final time of interest. Obtaining LCS positions at intermediate times, however, has been problematic, because either the repelling or the attracting family is unstable with respect to numerical advection in a given time direction. Here we develop a new approach to compute arbitrary positions of hyperbolic LCS in a numerically robust fashion. Our approach only involves the advection of attracting material surfaces, thereby providing accurate LCS tracking at low computational cost. We illustrate the advantages of this approach on a simple model and on a turbulent velocity data set.
Citation: Daniel Karrasch, Mohammad Farazmand, George Haller. Attraction-based computation of hyperbolic Lagrangian coherent structures. Journal of Computational Dynamics, 2015, 2 (1) : 83-93. doi: 10.3934/jcd.2015.2.83
References:
[1]

M. Farazmand, D. Blazevski and G. Haller, Shearless transport barriers in unsteady two-dimensional flows and maps,, Physica D, 278-279 (2014), 278.  doi: 10.1016/j.physd.2014.03.008.  Google Scholar

[2]

M. Farazmand and G. Haller, Computing Lagrangian coherent structures from their variational theory,, Chaos, 22 (2012).  doi: 10.1063/1.3690153.  Google Scholar

[3]

M. Farazmand and G. Haller, Attracting and repelling Lagrangian coherent structures from a single computation,, Chaos, 23 (2013).  doi: 10.1063/1.4800210.  Google Scholar

[4]

M. Farazmand and G. Haller, How coherent are the vortices of two-dimensional turbulence?,, submitted preprint, ().   Google Scholar

[5]

G. Haller, Lagrangian Coherent Structures,, Annual Review of Fluid Mechanics, 47 (2015), 137.  doi: 10.1146/annurev-fluid-010313-141322.  Google Scholar

[6]

G. Haller and F. J. Beron-Vera, Geodesic theory of transport barriers in two-dimensional flows,, Physica D, 241 (2012), 1680.  doi: 10.1016/j.physd.2012.06.012.  Google Scholar

[7]

G. Haller and T. Sapsis, Lagrangian coherent structures and the smallest finite-time Lyapunov exponent,, Chaos, 21 (2011).  doi: 10.1063/1.3579597.  Google Scholar

[8]

G. Haller and G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence,, Physica D, 147 (2000), 352.  doi: 10.1016/S0167-2789(00)00142-1.  Google Scholar

[9]

D. Karrasch, Attracting Lagrangian coherent structures on Riemannian manifolds,, Chaos, 25 (2015).   Google Scholar

[10]

A. M. Mancho, D. Small, S. Wiggins and K. Ide, Computation of stable and unstable manifolds of hyperbolic trajectories in two-dimensional, aperiodically time-dependent vector fields,, Physica D, 182 (2003), 188.  doi: 10.1016/S0167-2789(03)00152-0.  Google Scholar

[11]

K. Onu, F. Huhn and G. Haller, LCS Tool: A computational platform for Lagrangian coherent structures,, Journal of Computational Science, 7 (2015), 26.  doi: 10.1016/j.jocs.2014.12.002.  Google Scholar

[12]

R. Peikert and F. Sadlo, Height Ridge Computation and Filtering for Visualization,, in Visualization Symposium, (2008), 119.  doi: 10.1109/PACIFICVIS.2008.4475467.  Google Scholar

[13]

B. Schindler, R. Peikert, R. Fuchs and H. Theisel, Ridge Concepts for the Visualization of Lagrangian Coherent Structures,, in Topological Methods in Data Analysis and Visualization II (eds. R. Peikert, (2012), 221.  doi: 10.1007/978-3-642-23175-9_15.  Google Scholar

[14]

K.-F. Tchon, J. Dompierre, M.-G. Vallet, F. Guibault and R. Camarero, Two-dimensional metric tensor visualization using pseudo-meshes,, Engineering with Computers, 22 (2006), 121.  doi: 10.1007/s00366-006-0012-3.  Google Scholar

show all references

References:
[1]

M. Farazmand, D. Blazevski and G. Haller, Shearless transport barriers in unsteady two-dimensional flows and maps,, Physica D, 278-279 (2014), 278.  doi: 10.1016/j.physd.2014.03.008.  Google Scholar

[2]

M. Farazmand and G. Haller, Computing Lagrangian coherent structures from their variational theory,, Chaos, 22 (2012).  doi: 10.1063/1.3690153.  Google Scholar

[3]

M. Farazmand and G. Haller, Attracting and repelling Lagrangian coherent structures from a single computation,, Chaos, 23 (2013).  doi: 10.1063/1.4800210.  Google Scholar

[4]

M. Farazmand and G. Haller, How coherent are the vortices of two-dimensional turbulence?,, submitted preprint, ().   Google Scholar

[5]

G. Haller, Lagrangian Coherent Structures,, Annual Review of Fluid Mechanics, 47 (2015), 137.  doi: 10.1146/annurev-fluid-010313-141322.  Google Scholar

[6]

G. Haller and F. J. Beron-Vera, Geodesic theory of transport barriers in two-dimensional flows,, Physica D, 241 (2012), 1680.  doi: 10.1016/j.physd.2012.06.012.  Google Scholar

[7]

G. Haller and T. Sapsis, Lagrangian coherent structures and the smallest finite-time Lyapunov exponent,, Chaos, 21 (2011).  doi: 10.1063/1.3579597.  Google Scholar

[8]

G. Haller and G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence,, Physica D, 147 (2000), 352.  doi: 10.1016/S0167-2789(00)00142-1.  Google Scholar

[9]

D. Karrasch, Attracting Lagrangian coherent structures on Riemannian manifolds,, Chaos, 25 (2015).   Google Scholar

[10]

A. M. Mancho, D. Small, S. Wiggins and K. Ide, Computation of stable and unstable manifolds of hyperbolic trajectories in two-dimensional, aperiodically time-dependent vector fields,, Physica D, 182 (2003), 188.  doi: 10.1016/S0167-2789(03)00152-0.  Google Scholar

[11]

K. Onu, F. Huhn and G. Haller, LCS Tool: A computational platform for Lagrangian coherent structures,, Journal of Computational Science, 7 (2015), 26.  doi: 10.1016/j.jocs.2014.12.002.  Google Scholar

[12]

R. Peikert and F. Sadlo, Height Ridge Computation and Filtering for Visualization,, in Visualization Symposium, (2008), 119.  doi: 10.1109/PACIFICVIS.2008.4475467.  Google Scholar

[13]

B. Schindler, R. Peikert, R. Fuchs and H. Theisel, Ridge Concepts for the Visualization of Lagrangian Coherent Structures,, in Topological Methods in Data Analysis and Visualization II (eds. R. Peikert, (2012), 221.  doi: 10.1007/978-3-642-23175-9_15.  Google Scholar

[14]

K.-F. Tchon, J. Dompierre, M.-G. Vallet, F. Guibault and R. Camarero, Two-dimensional metric tensor visualization using pseudo-meshes,, Engineering with Computers, 22 (2006), 121.  doi: 10.1007/s00366-006-0012-3.  Google Scholar

[1]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[2]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[3]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[4]

The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013

[5]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[6]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[7]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[8]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[9]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[10]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[11]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[12]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[13]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[14]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[15]

Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158

[16]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[17]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[18]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[19]

Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281

[20]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

 Impact Factor: 

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (10)

[Back to Top]