-
Previous Article
Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof
- JCD Home
- This Issue
-
Next Article
Numerical event-based ISS controller design via a dynamic game approach
Attraction-based computation of hyperbolic Lagrangian coherent structures
1. | ETH Zürich, Institute of Mechanical Systems, Leonhardstrasse 21, 8092 Zürich, Switzerland, Switzerland |
2. | ETH Zürich, Institute of Mechanical Systems, Rämistrasse 101, 8092 Zürich, Switzerland |
References:
[1] |
M. Farazmand, D. Blazevski and G. Haller, Shearless transport barriers in unsteady two-dimensional flows and maps, Physica D, 278-279 (2014), 44-57.
doi: 10.1016/j.physd.2014.03.008. |
[2] |
M. Farazmand and G. Haller, Computing Lagrangian coherent structures from their variational theory, Chaos, 22 (2012), 013128.
doi: 10.1063/1.3690153. |
[3] |
M. Farazmand and G. Haller, Attracting and repelling Lagrangian coherent structures from a single computation, Chaos, 23 (2013), 023101.
doi: 10.1063/1.4800210. |
[4] |
M. Farazmand and G. Haller, How coherent are the vortices of two-dimensional turbulence?, submitted preprint, arXiv:1402.4835. |
[5] |
G. Haller, Lagrangian Coherent Structures, Annual Review of Fluid Mechanics, 47 (2015), 137-161.
doi: 10.1146/annurev-fluid-010313-141322. |
[6] |
G. Haller and F. J. Beron-Vera, Geodesic theory of transport barriers in two-dimensional flows, Physica D, 241 (2012), 1680-1702.
doi: 10.1016/j.physd.2012.06.012. |
[7] |
G. Haller and T. Sapsis, Lagrangian coherent structures and the smallest finite-time Lyapunov exponent, Chaos, 21 (2011), 023115, 7pp.
doi: 10.1063/1.3579597. |
[8] |
G. Haller and G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence, Physica D, 147 (2000), 352-370.
doi: 10.1016/S0167-2789(00)00142-1. |
[9] |
D. Karrasch, Attracting Lagrangian coherent structures on Riemannian manifolds, Chaos, 25 (2015), 087411. |
[10] |
A. M. Mancho, D. Small, S. Wiggins and K. Ide, Computation of stable and unstable manifolds of hyperbolic trajectories in two-dimensional, aperiodically time-dependent vector fields, Physica D, 182 (2003), 188-222.
doi: 10.1016/S0167-2789(03)00152-0. |
[11] |
K. Onu, F. Huhn and G. Haller, LCS Tool: A computational platform for Lagrangian coherent structures, Journal of Computational Science, 7 (2015), 26-36.
doi: 10.1016/j.jocs.2014.12.002. |
[12] |
R. Peikert and F. Sadlo, Height Ridge Computation and Filtering for Visualization, in Visualization Symposium, 2008. PacificVIS '08. IEEE Pacific, 2008, 119-126.
doi: 10.1109/PACIFICVIS.2008.4475467. |
[13] |
B. Schindler, R. Peikert, R. Fuchs and H. Theisel, Ridge Concepts for the Visualization of Lagrangian Coherent Structures, in Topological Methods in Data Analysis and Visualization II (eds. R. Peikert, H. Hauser, H. Carr and R. Fuchs), Mathematics and Visualization, Springer, 2012, 221-235.
doi: 10.1007/978-3-642-23175-9_15. |
[14] |
K.-F. Tchon, J. Dompierre, M.-G. Vallet, F. Guibault and R. Camarero, Two-dimensional metric tensor visualization using pseudo-meshes, Engineering with Computers, 22 (2006), 121-131.
doi: 10.1007/s00366-006-0012-3. |
show all references
References:
[1] |
M. Farazmand, D. Blazevski and G. Haller, Shearless transport barriers in unsteady two-dimensional flows and maps, Physica D, 278-279 (2014), 44-57.
doi: 10.1016/j.physd.2014.03.008. |
[2] |
M. Farazmand and G. Haller, Computing Lagrangian coherent structures from their variational theory, Chaos, 22 (2012), 013128.
doi: 10.1063/1.3690153. |
[3] |
M. Farazmand and G. Haller, Attracting and repelling Lagrangian coherent structures from a single computation, Chaos, 23 (2013), 023101.
doi: 10.1063/1.4800210. |
[4] |
M. Farazmand and G. Haller, How coherent are the vortices of two-dimensional turbulence?, submitted preprint, arXiv:1402.4835. |
[5] |
G. Haller, Lagrangian Coherent Structures, Annual Review of Fluid Mechanics, 47 (2015), 137-161.
doi: 10.1146/annurev-fluid-010313-141322. |
[6] |
G. Haller and F. J. Beron-Vera, Geodesic theory of transport barriers in two-dimensional flows, Physica D, 241 (2012), 1680-1702.
doi: 10.1016/j.physd.2012.06.012. |
[7] |
G. Haller and T. Sapsis, Lagrangian coherent structures and the smallest finite-time Lyapunov exponent, Chaos, 21 (2011), 023115, 7pp.
doi: 10.1063/1.3579597. |
[8] |
G. Haller and G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence, Physica D, 147 (2000), 352-370.
doi: 10.1016/S0167-2789(00)00142-1. |
[9] |
D. Karrasch, Attracting Lagrangian coherent structures on Riemannian manifolds, Chaos, 25 (2015), 087411. |
[10] |
A. M. Mancho, D. Small, S. Wiggins and K. Ide, Computation of stable and unstable manifolds of hyperbolic trajectories in two-dimensional, aperiodically time-dependent vector fields, Physica D, 182 (2003), 188-222.
doi: 10.1016/S0167-2789(03)00152-0. |
[11] |
K. Onu, F. Huhn and G. Haller, LCS Tool: A computational platform for Lagrangian coherent structures, Journal of Computational Science, 7 (2015), 26-36.
doi: 10.1016/j.jocs.2014.12.002. |
[12] |
R. Peikert and F. Sadlo, Height Ridge Computation and Filtering for Visualization, in Visualization Symposium, 2008. PacificVIS '08. IEEE Pacific, 2008, 119-126.
doi: 10.1109/PACIFICVIS.2008.4475467. |
[13] |
B. Schindler, R. Peikert, R. Fuchs and H. Theisel, Ridge Concepts for the Visualization of Lagrangian Coherent Structures, in Topological Methods in Data Analysis and Visualization II (eds. R. Peikert, H. Hauser, H. Carr and R. Fuchs), Mathematics and Visualization, Springer, 2012, 221-235.
doi: 10.1007/978-3-642-23175-9_15. |
[14] |
K.-F. Tchon, J. Dompierre, M.-G. Vallet, F. Guibault and R. Camarero, Two-dimensional metric tensor visualization using pseudo-meshes, Engineering with Computers, 22 (2006), 121-131.
doi: 10.1007/s00366-006-0012-3. |
[1] |
Chantelle Blachut, Cecilia González-Tokman. A tale of two vortices: How numerical ergodic theory and transfer operators reveal fundamental changes to coherent structures in non-autonomous dynamical systems. Journal of Computational Dynamics, 2020, 7 (2) : 369-399. doi: 10.3934/jcd.2020015 |
[2] |
Michael Dellnitz, Christian Horenkamp. The efficient approximation of coherent pairs in non-autonomous dynamical systems. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3029-3042. doi: 10.3934/dcds.2012.32.3029 |
[3] |
Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587 |
[4] |
Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Approximation of attractors of nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 215-238. doi: 10.3934/dcdsb.2005.5.215 |
[5] |
Chunqiu Li, Desheng Li, Xuewei Ju. On the forward dynamical behavior of nonautonomous systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 473-487. doi: 10.3934/dcdsb.2019190 |
[6] |
Benoît Saussol. Recurrence rate in rapidly mixing dynamical systems. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 259-267. doi: 10.3934/dcds.2006.15.259 |
[7] |
Björn Schmalfuss. Attractors for nonautonomous and random dynamical systems perturbed by impulses. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 727-744. doi: 10.3934/dcds.2003.9.727 |
[8] |
David Cheban. Global attractors of nonautonomous quasihomogeneous dynamical systems. Conference Publications, 2001, 2001 (Special) : 96-101. doi: 10.3934/proc.2001.2001.96 |
[9] |
Hongyong Cui, Peter E. Kloeden, Meihua Yang. Forward omega limit sets of nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1103-1114. doi: 10.3934/dcdss.2020065 |
[10] |
Ian Melbourne, Dalia Terhesiu. Mixing properties for toral extensions of slowly mixing dynamical systems with finite and infinite measure. Journal of Modern Dynamics, 2018, 12: 285-313. doi: 10.3934/jmd.2018011 |
[11] |
Everaldo de Mello Bonotto, Matheus Cheque Bortolan, Rodolfo Collegari, José Manuel Uzal. Impulses in driving semigroups of nonautonomous dynamical systems: Application to cascade systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4645-4661. doi: 10.3934/dcdsb.2020306 |
[12] |
Marta Štefánková. Inheriting of chaos in uniformly convergent nonautonomous dynamical systems on the interval. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3435-3443. doi: 10.3934/dcds.2016.36.3435 |
[13] |
João Ferreira Alves, Michal Málek. Zeta functions and topological entropy of periodic nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 465-482. doi: 10.3934/dcds.2013.33.465 |
[14] |
Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67 |
[15] |
Karl P. Hadeler. Quiescent phases and stability in discrete time dynamical systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 129-152. doi: 10.3934/dcdsb.2015.20.129 |
[16] |
S.Durga Bhavani, K. Viswanath. A general approach to stability and sensitivity in dynamical systems. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 131-140. doi: 10.3934/dcds.1998.4.131 |
[17] |
Matthew Macauley, Henning S. Mortveit. Update sequence stability in graph dynamical systems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1533-1541. doi: 10.3934/dcdss.2011.4.1533 |
[18] |
David Cheban. I. U. Bronshtein's conjecture for monotone nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1095-1113. doi: 10.3934/dcdsb.2019008 |
[19] |
Jakub Šotola. Relationship between Li-Yorke chaos and positive topological sequence entropy in nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5119-5128. doi: 10.3934/dcds.2018225 |
[20] |
Yejuan Wang, Tomás Caraballo. Morse decomposition for gradient-like multi-valued autonomous and nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2303-2326. doi: 10.3934/dcdss.2020092 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]