June  2015, 2(2): 247-265. doi: 10.3934/jcd.2015005

A kernel-based method for data-driven koopman spectral analysis

1. 

United Technologies Research Center, 411 Silver Lane, East Hartford, CT 06118, United States

2. 

Dept. of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544

3. 

Department of Chemical and Biological Engineering & PACM, Princeton University, Princeton, NJ 08544, United States

Received  February 2015 Revised  February 2016 Published  May 2016

A data-driven, kernel-based method for approximating the leading Koopman eigenvalues, eigenfunctions, and modes in problems with high-dimensional state spaces is presented. This approach uses a set of scalar observables (functions that map a state to a scalar value) that are defined implicitly by the feature map associated with a user-defined kernel function. This circumvents the computational issues that arise due to the number of functions required to span a ``sufficiently rich'' subspace of all possible scalar observables in such applications. We illustrate this method on two examples: the first is the FitzHugh-Nagumo PDE, a prototypical one-dimensional reaction-diffusion system, and the second is a set of vorticity data computed from experimentally obtained velocity data from flow past a cylinder at Reynolds number 413. In both examples, we use the output of Dynamic Mode Decomposition, which has a similar computational cost, as the benchmark for our approach.
Citation: Matthew O. Williams, Clarence W. Rowley, Ioannis G. Kevrekidis. A kernel-based method for data-driven koopman spectral analysis. Journal of Computational Dynamics, 2015, 2 (2) : 247-265. doi: 10.3934/jcd.2015005
References:
[1]

S. Bagheri, Koopman-mode decomposition of the cylinder wake,, Journal of Fluid Mechanics, 726 (2013), 596.  doi: 10.1017/jfm.2013.249.  Google Scholar

[2]

S. Bagheri, Effects of weak noise on oscillating flows: Linking quality factor, Floquet modes, and Koopman spectrum,, Physics of Fluids, 26 (2014).  doi: 10.1063/1.4895898.  Google Scholar

[3]

G. Baudat and F. Anouar, Kernel-based methods and function approximation,, In Proceedings of the International Joint Conference on Neural Networks, 2 (2001), 1244.  doi: 10.1109/IJCNN.2001.939539.  Google Scholar

[4]

C. M. Bishop et al, Pattern Recognition and Machine Learning,, Springer, (2006).  doi: 10.1007/978-0-387-45528-0.  Google Scholar

[5]

J. P. Boyd, Chebyshev and Fourier Spectral Methods,, Courier Dover Publications, (2001).   Google Scholar

[6]

M. Budišić, R. Mohr and I. Mezić, Applied Koopmanism,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22 (2012).  doi: 10.1063/1.4772195.  Google Scholar

[7]

C. J. Burges, A tutorial on support vector machines for pattern recognition,, Data Mining and Knowledge Discovery, 2 (1998), 121.   Google Scholar

[8]

A. Chatterjee, An introduction to the proper orthogonal decomposition,, Current Science, 78 (2000), 808.   Google Scholar

[9]

K. K. Chen, J. H. Tu and C. W. Rowley, Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analyses,, Journal of Nonlinear Science, 22 (2012), 887.  doi: 10.1007/s00332-012-9130-9.  Google Scholar

[10]

R. R. Coifman and S. Lafon, Diffusion maps,, Applied and Computational Harmonic Analysis, 21 (2006), 5.  doi: 10.1016/j.acha.2006.04.006.  Google Scholar

[11]

N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods,, Cambridge University Press, (2000).  doi: 10.1017/CBO9780511801389.  Google Scholar

[12]

C. E. Elmer and E. S. Van Vleck, Spatially discrete FitzHugh-Nagumo equations,, SIAM Journal on Applied Mathematics, 65 (2005), 1153.  doi: 10.1137/S003613990343687X.  Google Scholar

[13]

P. Gaspard and S. Tasaki, Liouvillian dynamics of the {Hopf} bifurcation,, Physical Review E, 64 (2001).  doi: 10.1103/PhysRevE.64.056232.  Google Scholar

[14]

M. S. Hemati, M. O. Williams and C. W. Rowley, Dynamic mode decomposition for large and streaming datasets,, Physics of Fluids, 26 (2014).  doi: 10.1063/1.4901016.  Google Scholar

[15]

P. Holmes, J. L. Lumley, G. Berkooz and C. W. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry,, Cambridge University Press, (2012).  doi: 10.1017/CBO9780511919701.  Google Scholar

[16]

M. R. Jovanović, P. J. Schmid and J. W. Nichols, Sparsity-promoting dynamic mode decomposition,, Physics of Fluids, 26 (2014).   Google Scholar

[17]

J.-N. Juang, Applied System Identification,, Prentice Hall, (1994).   Google Scholar

[18]

B. O. Koopman and J. von Neumann, Dynamical systems of continuous spectra,, Proceedings of the National Academy of Sciences of the United States of America, 18 (1932), 255.  doi: 10.1073/pnas.18.3.255.  Google Scholar

[19]

B. O. Koopman, Hamiltonian systems and transformation in Hilbert space,, Proceedings of the National Academy of Sciences of the United States of America, 17 (1931), 315.  doi: 10.1073/pnas.17.5.315.  Google Scholar

[20]

J. A. Lee and M. Verleysen, Nonlinear Dimensionality Reduction,, Springer, (2007).  doi: 10.1007/978-0-387-39351-3.  Google Scholar

[21]

R. B. Lehoucq, D. C. Sorensen and C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, volume 6., SIAM, (1998).  doi: 10.1137/1.9780898719628.  Google Scholar

[22]

A. Mauroy and I. Mezic, A spectral operator-theoretic framework for global stability,, In 52nd IEEE Conference on Decision and Control, (2013), 5234.  doi: 10.1109/CDC.2013.6760712.  Google Scholar

[23]

I. Mezić, Spectral properties of dynamical systems, model reduction and decompositions,, Nonlinear Dynamics, 41 (2005), 309.  doi: 10.1007/s11071-005-2824-x.  Google Scholar

[24]

I. Mezić, Analysis of fluid flows via spectral properties of the Koopman operator,, Annual Review of Fluid Mechanics, 45 (2013), 357.  doi: 10.1146/annurev-fluid-011212-140652.  Google Scholar

[25]

C. E. Rasmussen, Gaussian Processes for Machine Learning,, MIT Press, (2006).   Google Scholar

[26]

C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter and D. S. Henningson, Spectral analysis of nonlinear flows,, Journal of Fluid Mechanics, 641 (2009), 115.  doi: 10.1017/S0022112009992059.  Google Scholar

[27]

P. J. Schmid, Dynamic mode decomposition of numerical and experimental data,, Journal of Fluid Mechanics, 656 (2010), 5.  doi: 10.1017/S0022112010001217.  Google Scholar

[28]

P. J. Schmid, D. Violato and F. Scarano, Decomposition of time-resolved tomographic PIV,, Experiments in Fluids, 52 (2012), 1567.  doi: 10.1007/s00348-012-1266-8.  Google Scholar

[29]

P. J. Schmid, L. Li, M. P. Juniper and O. Pust, Applications of the dynamic mode decomposition,, Theoretical and Computational Fluid Dynamics, 25 (2011), 249.  doi: 10.1007/s00162-010-0203-9.  Google Scholar

[30]

B. Scholkopf, The kernel trick for distances,, Advances in Neural Information Processing Systems, (2001), 301.   Google Scholar

[31]

L. Sirovich, Turbulence and the dynamics of coherent structures. part I: Coherent structures,, Quarterly of applied mathematics, 45 (1987), 561.   Google Scholar

[32]

G. Tissot, L. Cordier, N. Benard and B. R. Noack, Model reduction using dynamic mode decomposition,, Comptes Rendus Mćcanique, 342 (2014), 410.  doi: 10.1016/j.crme.2013.12.011.  Google Scholar

[33]

J. H. Tu, C. W. Rowley, J. N. Kutz and J. K. Shang, Toward compressed DMD: Spectral analysis of fluid flows using sub-Nyquist-rate PIV data,, Experiments in Fluids, 55 (2014), 1.   Google Scholar

[34]

J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton and J. N. Kutz, On dynamic mode decomposition: Theory and applications,, Journal of Computational Dynamics, 1 (2014), 391.  doi: 10.3934/jcd.2014.1.391.  Google Scholar

[35]

M. O. Williams, I. G. Kevrekidis and C. W. Rowley, A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,, Journal of Nonlinear Science, 25 (2015), 1307.  doi: 10.1007/s00332-015-9258-5.  Google Scholar

[36]

A. Wynn, D. S. Pearson, B. Ganapathisubramani and P. J. Goulart, Optimal mode decomposition for unsteady flows,, Journal of Fluid Mechanics, 733 (2013), 473.  doi: 10.1017/jfm.2013.426.  Google Scholar

show all references

References:
[1]

S. Bagheri, Koopman-mode decomposition of the cylinder wake,, Journal of Fluid Mechanics, 726 (2013), 596.  doi: 10.1017/jfm.2013.249.  Google Scholar

[2]

S. Bagheri, Effects of weak noise on oscillating flows: Linking quality factor, Floquet modes, and Koopman spectrum,, Physics of Fluids, 26 (2014).  doi: 10.1063/1.4895898.  Google Scholar

[3]

G. Baudat and F. Anouar, Kernel-based methods and function approximation,, In Proceedings of the International Joint Conference on Neural Networks, 2 (2001), 1244.  doi: 10.1109/IJCNN.2001.939539.  Google Scholar

[4]

C. M. Bishop et al, Pattern Recognition and Machine Learning,, Springer, (2006).  doi: 10.1007/978-0-387-45528-0.  Google Scholar

[5]

J. P. Boyd, Chebyshev and Fourier Spectral Methods,, Courier Dover Publications, (2001).   Google Scholar

[6]

M. Budišić, R. Mohr and I. Mezić, Applied Koopmanism,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22 (2012).  doi: 10.1063/1.4772195.  Google Scholar

[7]

C. J. Burges, A tutorial on support vector machines for pattern recognition,, Data Mining and Knowledge Discovery, 2 (1998), 121.   Google Scholar

[8]

A. Chatterjee, An introduction to the proper orthogonal decomposition,, Current Science, 78 (2000), 808.   Google Scholar

[9]

K. K. Chen, J. H. Tu and C. W. Rowley, Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analyses,, Journal of Nonlinear Science, 22 (2012), 887.  doi: 10.1007/s00332-012-9130-9.  Google Scholar

[10]

R. R. Coifman and S. Lafon, Diffusion maps,, Applied and Computational Harmonic Analysis, 21 (2006), 5.  doi: 10.1016/j.acha.2006.04.006.  Google Scholar

[11]

N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods,, Cambridge University Press, (2000).  doi: 10.1017/CBO9780511801389.  Google Scholar

[12]

C. E. Elmer and E. S. Van Vleck, Spatially discrete FitzHugh-Nagumo equations,, SIAM Journal on Applied Mathematics, 65 (2005), 1153.  doi: 10.1137/S003613990343687X.  Google Scholar

[13]

P. Gaspard and S. Tasaki, Liouvillian dynamics of the {Hopf} bifurcation,, Physical Review E, 64 (2001).  doi: 10.1103/PhysRevE.64.056232.  Google Scholar

[14]

M. S. Hemati, M. O. Williams and C. W. Rowley, Dynamic mode decomposition for large and streaming datasets,, Physics of Fluids, 26 (2014).  doi: 10.1063/1.4901016.  Google Scholar

[15]

P. Holmes, J. L. Lumley, G. Berkooz and C. W. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry,, Cambridge University Press, (2012).  doi: 10.1017/CBO9780511919701.  Google Scholar

[16]

M. R. Jovanović, P. J. Schmid and J. W. Nichols, Sparsity-promoting dynamic mode decomposition,, Physics of Fluids, 26 (2014).   Google Scholar

[17]

J.-N. Juang, Applied System Identification,, Prentice Hall, (1994).   Google Scholar

[18]

B. O. Koopman and J. von Neumann, Dynamical systems of continuous spectra,, Proceedings of the National Academy of Sciences of the United States of America, 18 (1932), 255.  doi: 10.1073/pnas.18.3.255.  Google Scholar

[19]

B. O. Koopman, Hamiltonian systems and transformation in Hilbert space,, Proceedings of the National Academy of Sciences of the United States of America, 17 (1931), 315.  doi: 10.1073/pnas.17.5.315.  Google Scholar

[20]

J. A. Lee and M. Verleysen, Nonlinear Dimensionality Reduction,, Springer, (2007).  doi: 10.1007/978-0-387-39351-3.  Google Scholar

[21]

R. B. Lehoucq, D. C. Sorensen and C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, volume 6., SIAM, (1998).  doi: 10.1137/1.9780898719628.  Google Scholar

[22]

A. Mauroy and I. Mezic, A spectral operator-theoretic framework for global stability,, In 52nd IEEE Conference on Decision and Control, (2013), 5234.  doi: 10.1109/CDC.2013.6760712.  Google Scholar

[23]

I. Mezić, Spectral properties of dynamical systems, model reduction and decompositions,, Nonlinear Dynamics, 41 (2005), 309.  doi: 10.1007/s11071-005-2824-x.  Google Scholar

[24]

I. Mezić, Analysis of fluid flows via spectral properties of the Koopman operator,, Annual Review of Fluid Mechanics, 45 (2013), 357.  doi: 10.1146/annurev-fluid-011212-140652.  Google Scholar

[25]

C. E. Rasmussen, Gaussian Processes for Machine Learning,, MIT Press, (2006).   Google Scholar

[26]

C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter and D. S. Henningson, Spectral analysis of nonlinear flows,, Journal of Fluid Mechanics, 641 (2009), 115.  doi: 10.1017/S0022112009992059.  Google Scholar

[27]

P. J. Schmid, Dynamic mode decomposition of numerical and experimental data,, Journal of Fluid Mechanics, 656 (2010), 5.  doi: 10.1017/S0022112010001217.  Google Scholar

[28]

P. J. Schmid, D. Violato and F. Scarano, Decomposition of time-resolved tomographic PIV,, Experiments in Fluids, 52 (2012), 1567.  doi: 10.1007/s00348-012-1266-8.  Google Scholar

[29]

P. J. Schmid, L. Li, M. P. Juniper and O. Pust, Applications of the dynamic mode decomposition,, Theoretical and Computational Fluid Dynamics, 25 (2011), 249.  doi: 10.1007/s00162-010-0203-9.  Google Scholar

[30]

B. Scholkopf, The kernel trick for distances,, Advances in Neural Information Processing Systems, (2001), 301.   Google Scholar

[31]

L. Sirovich, Turbulence and the dynamics of coherent structures. part I: Coherent structures,, Quarterly of applied mathematics, 45 (1987), 561.   Google Scholar

[32]

G. Tissot, L. Cordier, N. Benard and B. R. Noack, Model reduction using dynamic mode decomposition,, Comptes Rendus Mćcanique, 342 (2014), 410.  doi: 10.1016/j.crme.2013.12.011.  Google Scholar

[33]

J. H. Tu, C. W. Rowley, J. N. Kutz and J. K. Shang, Toward compressed DMD: Spectral analysis of fluid flows using sub-Nyquist-rate PIV data,, Experiments in Fluids, 55 (2014), 1.   Google Scholar

[34]

J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton and J. N. Kutz, On dynamic mode decomposition: Theory and applications,, Journal of Computational Dynamics, 1 (2014), 391.  doi: 10.3934/jcd.2014.1.391.  Google Scholar

[35]

M. O. Williams, I. G. Kevrekidis and C. W. Rowley, A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,, Journal of Nonlinear Science, 25 (2015), 1307.  doi: 10.1007/s00332-015-9258-5.  Google Scholar

[36]

A. Wynn, D. S. Pearson, B. Ganapathisubramani and P. J. Goulart, Optimal mode decomposition for unsteady flows,, Journal of Fluid Mechanics, 733 (2013), 473.  doi: 10.1017/jfm.2013.426.  Google Scholar

[1]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061

[2]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[3]

Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352

[4]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[5]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[6]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[7]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[8]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[9]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[10]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[11]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[12]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[13]

Min Ji, Xinna Ye, Fangyao Qian, T.C.E. Cheng, Yiwei Jiang. Parallel-machine scheduling in shared manufacturing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020174

[14]

Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050

[15]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[16]

Nicholas Geneva, Nicholas Zabaras. Multi-fidelity generative deep learning turbulent flows. Foundations of Data Science, 2020, 2 (4) : 391-428. doi: 10.3934/fods.2020019

[17]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[18]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[19]

Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002

[20]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

 Impact Factor: 

Metrics

  • PDF downloads (506)
  • HTML views (0)
  • Cited by (56)

[Back to Top]