January  2016, 3(1): 1-16. doi: 10.3934/jcd.2016001

Discretization strategies for computing Conley indices and Morse decompositions of flows

1. 

Department of Mathematics, Rutgers, The State University of New Jersey, 110 Frelinghuysen Rd, Piscataway, NJ 08854-8019, United States

2. 

Division of Computational Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland, Poland

Received  April 2015 Revised  July 2016 Published  August 2016

Conley indices and Morse decompositions of flows can be found by using algorithms which rigorously analyze discrete dynamical systems. This usually involves integrating a time discretization of the flow using interval arithmetic. We compare the old idea of fixing a time step as a parameter to a time step continuously varying in phase space. We present an example where this second strategy necessarily yields better numerical outputs and prove that our outputs yield a valid Morse decomposition of the given flow.
Citation: Konstantin Mischaikow, Marian Mrozek, Frank Weilandt. Discretization strategies for computing Conley indices and Morse decompositions of flows. Journal of Computational Dynamics, 2016, 3 (1) : 1-16. doi: 10.3934/jcd.2016001
References:
[1]

Z. Arai, H. Kokubu and P. Pilarczyk, Recent development in rigorous computational methods in dynamical systems,, Japan J. of Indust. Appl. Math., 26 (2009), 393.  doi: 10.1007/BF03186541.  Google Scholar

[2]

Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. Oka and P. Pilarczyk, A database schema for the analysis of global dynamics of multiparameter systems,, SIAM J. Applied Dyn. Syst., 8 (2009), 757.  doi: 10.1137/080734935.  Google Scholar

[3]

H. Ban and W. D. Kalies, A computational approach to Conley's decomposition theorem,, J. Comput. Nonlinear Dynam., 1 (2006), 312.  doi: 10.1115/1.2338651.  Google Scholar

[4]

E. Boczko, W. D. Kalies and K. Mischaikow, Polygonal approximation of flows,, Topology Appl., 154 (2007), 2501.  doi: 10.1016/j.topol.2006.04.033.  Google Scholar

[5]

J. Bush, M. Gameiro, S. Harker, H. Kokubu, K. Mischaikow, I. Obayashi and P. Pilarczyk, Combinatorial-topological framework for the analysis of global dynamics,, Chaos, 22 (2012).  doi: 10.1063/1.4767672.  Google Scholar

[6]

J. B. van den Berg and J. P. Lessard, Rigorous numerics in dynamics,, Notices Amer. Math. Soc., 62 (2015), 1057.  doi: 10.1090/noti1276.  Google Scholar

[7]

The CAPD Group, Computer assisted proofs in dynamics software library,, , ().   Google Scholar

[8]

C. Conley, Isolated Invariant Sets and the Morse Index,, CBMS Regional Conference Series in Mathematics, 38 (1978).   Google Scholar

[9]

G. Chen, K. Mischaikow, R. S. Laramee and E. Zang, Efficient Morse decompositions of vector fields,, IEEE Transactions on Visualizations and Computer Graphics, 14 (2008), 848.   Google Scholar

[10]

M. Dellnitz and O. Junge, Set oriented numerical methods for dynamical systems,, Chapter 5 in Handbook of dynamical systems, 2 (2002), 221.  doi: 10.1016/S1874-575X(02)80026-1.  Google Scholar

[11]

J. Franks and D. Richeson, Shift equivalence and the Conley index,, Transactions AMS, 352 (2000), 3305.  doi: 10.1090/S0002-9947-00-02488-0.  Google Scholar

[12]

M. Gidea and P. Zgliczynski, Covering relations for multidimensional dynamical systems I,, J. Differential Equations, 202 (2004), 32.  doi: 10.1016/j.jde.2004.03.013.  Google Scholar

[13]

M. Gidea and P. Zgliczynski, Covering relations for multidimensional dynamical systems II,, J. Differential Equations, 202 (2004), 59.  doi: 10.1016/j.jde.2004.03.014.  Google Scholar

[14]

T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology,, Applied Mathematical Sciences Vol. 157, (2004).  doi: 10.1007/b97315.  Google Scholar

[15]

W. D. Kalies, K. Mischaikow and R. C. A. M. VanderVorst, An algorithmic approach to chain recurrence,, Found. Comp. Math., 5 (2005), 409.  doi: 10.1007/s10208-004-0163-9.  Google Scholar

[16]

W. Massey, Homology and Cohomology Theory,, Marcel Dekker, (1978).   Google Scholar

[17]

K. Mischaikow and M. Mrozek, Conley index,, Chapter 9 in Handbook of dynamical systems, 2 (2002), 393.  doi: 10.1016/S1874-575X(02)80030-3.  Google Scholar

[18]

M. Mrozek, The Conley index on compact ANR's is of finite type,, Results Math., 18 (1990), 306.  doi: 10.1007/BF03323175.  Google Scholar

[19]

M. Mrozek, Index pairs algorithms,, Found. Comput. Math., 6 (2006), 457.  doi: 10.1007/s10208-005-0182-1.  Google Scholar

[20]

M. Mrozek, Leray functor and cohomological Conley index for discrete dynamical systems,, Trans. Amer. Math. Soc., 318 (1990), 149.  doi: 10.1090/S0002-9947-1990-0968888-1.  Google Scholar

[21]

P. Pilarczyk, L. García, B. A. Carreras and I. Llerena, A dynamical model for plasma confinement transitions,, J. Phys. A: Math. Theor., 45 (2012).  doi: 10.1088/1751-8113/45/12/125502.  Google Scholar

[22]

P. Pilarczyk, Computer assisted method for proving existence of periodic orbits,, Topol. Methods Nonlinear Anal., 13 (1999), 365.   Google Scholar

[23]

J. W. Robbin and D. Salamon, Dynamical systems, shape theory and the Conley index,, Ergodic Theory Dynamical Systems, (1988), 375.  doi: 10.1017/S0143385700009494.  Google Scholar

[24]

K. P. Rybakowski, The Homotopy Index and Partial Differential Equations,, Universitext, (1987).  doi: 10.1007/978-3-642-72833-4.  Google Scholar

[25]

A. Szymczak, A combinatorial procedure for finding isolating neighbourhoods and index pairs,, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1075.  doi: 10.1017/S0308210500026901.  Google Scholar

[26]

G. Teschl, Ordinary Differential Equations and Dynamical Systems,, Graduate Studies in Mathematics, 140 (2012).  doi: 10.1090/gsm/140.  Google Scholar

show all references

References:
[1]

Z. Arai, H. Kokubu and P. Pilarczyk, Recent development in rigorous computational methods in dynamical systems,, Japan J. of Indust. Appl. Math., 26 (2009), 393.  doi: 10.1007/BF03186541.  Google Scholar

[2]

Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. Oka and P. Pilarczyk, A database schema for the analysis of global dynamics of multiparameter systems,, SIAM J. Applied Dyn. Syst., 8 (2009), 757.  doi: 10.1137/080734935.  Google Scholar

[3]

H. Ban and W. D. Kalies, A computational approach to Conley's decomposition theorem,, J. Comput. Nonlinear Dynam., 1 (2006), 312.  doi: 10.1115/1.2338651.  Google Scholar

[4]

E. Boczko, W. D. Kalies and K. Mischaikow, Polygonal approximation of flows,, Topology Appl., 154 (2007), 2501.  doi: 10.1016/j.topol.2006.04.033.  Google Scholar

[5]

J. Bush, M. Gameiro, S. Harker, H. Kokubu, K. Mischaikow, I. Obayashi and P. Pilarczyk, Combinatorial-topological framework for the analysis of global dynamics,, Chaos, 22 (2012).  doi: 10.1063/1.4767672.  Google Scholar

[6]

J. B. van den Berg and J. P. Lessard, Rigorous numerics in dynamics,, Notices Amer. Math. Soc., 62 (2015), 1057.  doi: 10.1090/noti1276.  Google Scholar

[7]

The CAPD Group, Computer assisted proofs in dynamics software library,, , ().   Google Scholar

[8]

C. Conley, Isolated Invariant Sets and the Morse Index,, CBMS Regional Conference Series in Mathematics, 38 (1978).   Google Scholar

[9]

G. Chen, K. Mischaikow, R. S. Laramee and E. Zang, Efficient Morse decompositions of vector fields,, IEEE Transactions on Visualizations and Computer Graphics, 14 (2008), 848.   Google Scholar

[10]

M. Dellnitz and O. Junge, Set oriented numerical methods for dynamical systems,, Chapter 5 in Handbook of dynamical systems, 2 (2002), 221.  doi: 10.1016/S1874-575X(02)80026-1.  Google Scholar

[11]

J. Franks and D. Richeson, Shift equivalence and the Conley index,, Transactions AMS, 352 (2000), 3305.  doi: 10.1090/S0002-9947-00-02488-0.  Google Scholar

[12]

M. Gidea and P. Zgliczynski, Covering relations for multidimensional dynamical systems I,, J. Differential Equations, 202 (2004), 32.  doi: 10.1016/j.jde.2004.03.013.  Google Scholar

[13]

M. Gidea and P. Zgliczynski, Covering relations for multidimensional dynamical systems II,, J. Differential Equations, 202 (2004), 59.  doi: 10.1016/j.jde.2004.03.014.  Google Scholar

[14]

T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology,, Applied Mathematical Sciences Vol. 157, (2004).  doi: 10.1007/b97315.  Google Scholar

[15]

W. D. Kalies, K. Mischaikow and R. C. A. M. VanderVorst, An algorithmic approach to chain recurrence,, Found. Comp. Math., 5 (2005), 409.  doi: 10.1007/s10208-004-0163-9.  Google Scholar

[16]

W. Massey, Homology and Cohomology Theory,, Marcel Dekker, (1978).   Google Scholar

[17]

K. Mischaikow and M. Mrozek, Conley index,, Chapter 9 in Handbook of dynamical systems, 2 (2002), 393.  doi: 10.1016/S1874-575X(02)80030-3.  Google Scholar

[18]

M. Mrozek, The Conley index on compact ANR's is of finite type,, Results Math., 18 (1990), 306.  doi: 10.1007/BF03323175.  Google Scholar

[19]

M. Mrozek, Index pairs algorithms,, Found. Comput. Math., 6 (2006), 457.  doi: 10.1007/s10208-005-0182-1.  Google Scholar

[20]

M. Mrozek, Leray functor and cohomological Conley index for discrete dynamical systems,, Trans. Amer. Math. Soc., 318 (1990), 149.  doi: 10.1090/S0002-9947-1990-0968888-1.  Google Scholar

[21]

P. Pilarczyk, L. García, B. A. Carreras and I. Llerena, A dynamical model for plasma confinement transitions,, J. Phys. A: Math. Theor., 45 (2012).  doi: 10.1088/1751-8113/45/12/125502.  Google Scholar

[22]

P. Pilarczyk, Computer assisted method for proving existence of periodic orbits,, Topol. Methods Nonlinear Anal., 13 (1999), 365.   Google Scholar

[23]

J. W. Robbin and D. Salamon, Dynamical systems, shape theory and the Conley index,, Ergodic Theory Dynamical Systems, (1988), 375.  doi: 10.1017/S0143385700009494.  Google Scholar

[24]

K. P. Rybakowski, The Homotopy Index and Partial Differential Equations,, Universitext, (1987).  doi: 10.1007/978-3-642-72833-4.  Google Scholar

[25]

A. Szymczak, A combinatorial procedure for finding isolating neighbourhoods and index pairs,, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 1075.  doi: 10.1017/S0308210500026901.  Google Scholar

[26]

G. Teschl, Ordinary Differential Equations and Dynamical Systems,, Graduate Studies in Mathematics, 140 (2012).  doi: 10.1090/gsm/140.  Google Scholar

[1]

Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, , () : -. doi: 10.3934/era.2021005

[2]

Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050

[3]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[6]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[7]

Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049

[8]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[9]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[10]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[11]

Michal Beneš, Pavel Eichler, Jakub Klinkovský, Miroslav Kolář, Jakub Solovský, Pavel Strachota, Alexandr Žák. Numerical simulation of fluidization for application in oxyfuel combustion. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 769-783. doi: 10.3934/dcdss.2020232

[12]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[13]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[14]

Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060

[15]

Editorial Office. Retraction: Xiaohong Zhu, Zili Yang and Tabharit Zoubir, Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1281. doi: 10.3934/dcdss.2019088

[16]

Zi Xu, Siwen Wang, Jinjin Huang. An efficient low complexity algorithm for box-constrained weighted maximin dispersion problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 971-979. doi: 10.3934/jimo.2020007

[17]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[18]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[19]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[20]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

 Impact Factor: 

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (2)

[Back to Top]