January  2016, 3(1): 17-50. doi: 10.3934/jcd.2016002

Towards a formal tie between combinatorial and classical vector field dynamics

1. 

Département de mathématiques, Université de Sherbrooke, 2500 boul. Université, Sherbrooke, Qc, J1K2R1, Canada

2. 

Division of Computational Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University, ul. St. Łojasiewicza 6, 30-348 Kraków, Poland

3. 

Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030

Received  September 2015 Revised  June 2016 Published  September 2016

Forman's combinatorial vector fields on simplicial complexes are a discrete analogue of classical flows generated by dynamical systems. Over the last decade, many notions from dynamical systems theory have found analogues in this combinatorial setting, such as for example discrete gradient flows and Forman's discrete Morse theory. So far, however, there is no formal tie between the two theories, and it is not immediately clear what the precise relation between the combinatorial and the classical setting is. The goal of the present paper is to establish such a formal tie on the level of the induced dynamics. Following Forman's paper [6], we work with possibly non-gradient combinatorial vector fields on finite simplicial complexes, and construct a flow-like upper semi-continuous acyclic-valued mapping on the underlying topological space whose dynamics is equivalent to the dynamics of Forman's combinatorial vector field on the level of isolated invariant sets and isolating blocks.
Citation: Tomasz Kaczynski, Marian Mrozek, Thomas Wanner. Towards a formal tie between combinatorial and classical vector field dynamics. Journal of Computational Dynamics, 2016, 3 (1) : 17-50. doi: 10.3934/jcd.2016002
References:
[1]

M. Allili and T. Kaczynski, An algorithmic approach to the construction of homomorphisms induced by maps in homology,, Transactions of the American Mathematical Society, 352 (2000), 2261.  doi: 10.1090/S0002-9947-99-02527-1.  Google Scholar

[2]

B. Batko and M. Mrozek, Weak index pairs and the Conley index for discrete multivalued dynamical systems,, SIAM Journal on Applied Dynamical Systems, 15 (2016), 1143.  doi: 10.1137/15M1046691.  Google Scholar

[3]

C. Conley, Isolated Invariant Sets and the Morse Index,, American Mathematical Society, (1978).   Google Scholar

[4]

C. Conley and R. Easton, Isolated invariant sets and isolating blocks,, Transactions of the American Mathematical Society, 158 (1971), 35.  doi: 10.1090/S0002-9947-1971-0279830-1.  Google Scholar

[5]

R. Forman, Morse theory for cell complexes,, Advances in Mathematics, 134 (1998), 90.  doi: 10.1006/aima.1997.1650.  Google Scholar

[6]

R. Forman, Combinatorial vector fields and dynamical systems,, Mathematische Zeitschrift, 228 (1998), 629.  doi: 10.1007/PL00004638.  Google Scholar

[7]

L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, $2^{nd}$ ed,, Topological Fixed Point Theory and Its Applications, 4 (2006).   Google Scholar

[8]

T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology,, Applied Mathematical Sciences, 157 (2004).  doi: 10.1007/b97315.  Google Scholar

[9]

T. Kaczynski and M. Mrozek, Conley index for discrete multivalued dynamical systems,, Topology and Its Applications, 65 (1995), 83.  doi: 10.1016/0166-8641(94)00088-K.  Google Scholar

[10]

H. King, K. Knudson and N. Mramor, Generating discrete Morse functions from point data,, Experimental Mathematics, 14 (2005), 435.  doi: 10.1080/10586458.2005.10128941.  Google Scholar

[11]

M. Mrozek and B. Batko, Coreduction homology algorithm,, Discrete and Computational Geometry, 41 (2009), 96.  doi: 10.1007/s00454-008-9073-y.  Google Scholar

[12]

V. Robins, P. J. Wood and A. P. Sheppard, Theory and algorithms for constructing discrete Morse complexes from grayscale digital images,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 1646.  doi: 10.1109/TPAMI.2011.95.  Google Scholar

[13]

T. Stephens and T. Wanner, Rigorous validation of isolating blocks for flows and their Conley indices,, SIAM Journal on Applied Dynamical Systems, 13 (2014), 1847.  doi: 10.1137/140971075.  Google Scholar

show all references

References:
[1]

M. Allili and T. Kaczynski, An algorithmic approach to the construction of homomorphisms induced by maps in homology,, Transactions of the American Mathematical Society, 352 (2000), 2261.  doi: 10.1090/S0002-9947-99-02527-1.  Google Scholar

[2]

B. Batko and M. Mrozek, Weak index pairs and the Conley index for discrete multivalued dynamical systems,, SIAM Journal on Applied Dynamical Systems, 15 (2016), 1143.  doi: 10.1137/15M1046691.  Google Scholar

[3]

C. Conley, Isolated Invariant Sets and the Morse Index,, American Mathematical Society, (1978).   Google Scholar

[4]

C. Conley and R. Easton, Isolated invariant sets and isolating blocks,, Transactions of the American Mathematical Society, 158 (1971), 35.  doi: 10.1090/S0002-9947-1971-0279830-1.  Google Scholar

[5]

R. Forman, Morse theory for cell complexes,, Advances in Mathematics, 134 (1998), 90.  doi: 10.1006/aima.1997.1650.  Google Scholar

[6]

R. Forman, Combinatorial vector fields and dynamical systems,, Mathematische Zeitschrift, 228 (1998), 629.  doi: 10.1007/PL00004638.  Google Scholar

[7]

L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, $2^{nd}$ ed,, Topological Fixed Point Theory and Its Applications, 4 (2006).   Google Scholar

[8]

T. Kaczynski, K. Mischaikow and M. Mrozek, Computational Homology,, Applied Mathematical Sciences, 157 (2004).  doi: 10.1007/b97315.  Google Scholar

[9]

T. Kaczynski and M. Mrozek, Conley index for discrete multivalued dynamical systems,, Topology and Its Applications, 65 (1995), 83.  doi: 10.1016/0166-8641(94)00088-K.  Google Scholar

[10]

H. King, K. Knudson and N. Mramor, Generating discrete Morse functions from point data,, Experimental Mathematics, 14 (2005), 435.  doi: 10.1080/10586458.2005.10128941.  Google Scholar

[11]

M. Mrozek and B. Batko, Coreduction homology algorithm,, Discrete and Computational Geometry, 41 (2009), 96.  doi: 10.1007/s00454-008-9073-y.  Google Scholar

[12]

V. Robins, P. J. Wood and A. P. Sheppard, Theory and algorithms for constructing discrete Morse complexes from grayscale digital images,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 1646.  doi: 10.1109/TPAMI.2011.95.  Google Scholar

[13]

T. Stephens and T. Wanner, Rigorous validation of isolating blocks for flows and their Conley indices,, SIAM Journal on Applied Dynamical Systems, 13 (2014), 1847.  doi: 10.1137/140971075.  Google Scholar

[1]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[2]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[3]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[4]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[5]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[6]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[7]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[8]

Madhurima Mukhopadhyay, Palash Sarkar, Shashank Singh, Emmanuel Thomé. New discrete logarithm computation for the medium prime case using the function field sieve. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020119

[9]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[10]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[11]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[12]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[13]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[14]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[15]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[16]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[17]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[18]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[19]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[20]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

 Impact Factor: 

Metrics

  • PDF downloads (114)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]