• Previous Article
    Asymptotic invariance and the discretisation of nonautonomous forward attracting sets
  • JCD Home
  • This Issue
  • Next Article
    Towards tensor-based methods for the numerical approximation of the Perron--Frobenius and Koopman operator
June  2016, 3(2): 163-177. doi: 10.3934/jcd.2016008

Computing coherent sets using the Fokker-Planck equation

1. 

Center for Mathematics, Technische Universität München, 85747 Garching bei München, Germany, Germany

Received  December 2015 Revised  October 2016 Published  December 2016

We perform a numerical approximation of coherent sets in finite-dimensional smooth dynamical systems by computing singular vectors of the transfer operator for a stochastically perturbed flow. This operator is obtained by solution of a discretized Fokker-Planck equation. For numerical implementation, we employ spectral collocation methods and an exponential time differentiation scheme. We experimentally compare our approach with the more classical method by Ulam that is based on discretization of the transfer operator of the unperturbed flow.
Citation: Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008
References:
[1]

R. Banisch and P. Koltai, Understanding the geometry of transport: diffusion maps for Lagrangian trajectory data unravel coherent sets,, , ().   Google Scholar

[2]

J. P. Boyd, Chebyshev and Fourier Spectral Methods,, Second edition. Dover Publications, (2001).   Google Scholar

[3]

S. Cox and P. Matthews, Exponential time differencing for stiff systems,, Journal of Computational Physics, 176 (2002), 430.  doi: 10.1006/jcph.2002.6995.  Google Scholar

[4]

M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO - Set oriented numerical methods for dynamical systems,, in Ergodic Theory, (2001), 145.   Google Scholar

[5]

M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior,, SIAM Journal on Numerical Analysis, 36 (1999), 491.  doi: 10.1137/S0036142996313002.  Google Scholar

[6]

L. Evans, Partial Differential Equations,, Graduate studies in mathematics, (2010).  doi: 10.1090/gsm/019.  Google Scholar

[7]

G. Froyland, S. Lloyd and N. Santitissadeekorn, Coherent sets for nonautonomous dynamical systems,, Physica D, 239 (2010), 1527.  doi: 10.1016/j.physd.2010.03.009.  Google Scholar

[8]

G. Froyland and K. Padberg, Almost-invariant sets and invariant manifolds - connecting probabilistic and geometric descriptions of coherent structures in flows,, Physica D, 238 (2009), 1507.  doi: 10.1016/j.physd.2009.03.002.  Google Scholar

[9]

G. Froyland, N. Santitissadeekorn and A. Monahan, Transport in time-dependent dynamical systems: Finite-time coherent sets,, Chaos, 20 (2010).  doi: 10.1063/1.3502450.  Google Scholar

[10]

G. Froyland, An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems,, Physica D: Nonlinear Phenomena, 250 (2013), 1.  doi: 10.1016/j.physd.2013.01.013.  Google Scholar

[11]

G. Froyland and M. Dellnitz, Detecting and locating near-optimal almost-invariant sets and cycles,, SIAM Journal on Scientific Computing, 24 (2003), 1839.  doi: 10.1137/S106482750238911X.  Google Scholar

[12]

G. Froyland and O. Junge, On fast computation of finite-time coherent sets using radial basis functions,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25 (2015).  doi: 10.1063/1.4927640.  Google Scholar

[13]

G. Froyland, O. Junge and P. Koltai, Estimating long term behavior of flows without trajectory integration: The infinitesimal generator approach,, SIAM Journal on Numerical Analysis, 51 (2013), 223.  doi: 10.1137/110819986.  Google Scholar

[14]

G. Froyland and P. Koltai, Estimating long-term behavior of periodically driven flows without trajectory integration,, , ().   Google Scholar

[15]

G. Froyland and K. Padberg-Gehle, Almost-invariant and finite-time coherent sets: Directionality, duration, and diffusion,, in Ergodic Theory, 70 (2014), 171.  doi: 10.1007/978-1-4939-0419-8_9.  Google Scholar

[16]

A. Hadjighasem, D. Karrasch, H. Teramoto and G. Haller, Spectral-clustering approach to lagrangian vortex detection,, Phys. Rev. E, 93 (2016).  doi: 10.1103/PhysRevE.93.063107.  Google Scholar

[17]

G. Haller, Distinguished material surfaces and coherent structures in three-dimensional fluid flows,, Physica D, 149 (2001), 248.  doi: 10.1016/S0167-2789(00)00199-8.  Google Scholar

[18]

G. Haller, A variational theory of hyperbolic Lagrangian coherent structures,, Physica D, 240 (2011), 574.  doi: 10.1016/j.physd.2010.11.010.  Google Scholar

[19]

G. Haller and G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence,, Physica D, 147 (2000), 352.  doi: 10.1016/S0167-2789(00)00142-1.  Google Scholar

[20]

W. Huisinga and B. Schmidt, Metastability and dominant eigenvalues of transfer operators,, in New Algorithms for Macromolecular Simulation, 49 (2006), 167.  doi: 10.1007/3-540-31618-3_11.  Google Scholar

[21]

O. Junge, J. E. Marsden and I. Mezic, Uncertainty in the dynamics of conservative maps,, in Proceedings of the 43rd IEEE Conference on Decision and Control, 2 (2004), 2225.  doi: 10.1109/CDC.2004.1430379.  Google Scholar

[22]

A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff pdes,, SIAM Journal on Scientific Computing, 26 (2005), 1214.  doi: 10.1137/S1064827502410633.  Google Scholar

[23]

A. Lasota and M. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics,, Second edition. Applied Mathematical Sciences, (1994).  doi: 10.1007/978-1-4612-4286-4.  Google Scholar

[24]

T. Y. Li, Finite Approximation for the Frobenius-Perron Operator. A Solution to Ulam's Conjecture,, J. Approx. Theory, 17 (1976), 177.  doi: 10.1016/0021-9045(76)90037-X.  Google Scholar

[25]

J.-C. Nave, Computational Science and Engineering,, 2008, (2015).   Google Scholar

[26]

B. Oksendal, Stochastic Differential Equations: An Introduction with Applications,, Springer, ().   Google Scholar

[27]

C. Schütte, A. Fischer, W. Huisinga and P. Deuflhard, A direct approach to conformational dynamics based on hybrid monte carlo,, Journal of Computational Physics, 151 (1999), 146.  doi: 10.1006/jcph.1999.6231.  Google Scholar

[28]

S. M. Ulam, Problems in Modern Mathematics,, Courier Dover Publications, (2004).   Google Scholar

[29]

T. A. Zang, On the rotation and skew-symmetric forms for incompressible flow simulations,, Applied Numerical Mathematics, 7 (1991), 27.  doi: 10.1016/0168-9274(91)90102-6.  Google Scholar

show all references

References:
[1]

R. Banisch and P. Koltai, Understanding the geometry of transport: diffusion maps for Lagrangian trajectory data unravel coherent sets,, , ().   Google Scholar

[2]

J. P. Boyd, Chebyshev and Fourier Spectral Methods,, Second edition. Dover Publications, (2001).   Google Scholar

[3]

S. Cox and P. Matthews, Exponential time differencing for stiff systems,, Journal of Computational Physics, 176 (2002), 430.  doi: 10.1006/jcph.2002.6995.  Google Scholar

[4]

M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO - Set oriented numerical methods for dynamical systems,, in Ergodic Theory, (2001), 145.   Google Scholar

[5]

M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior,, SIAM Journal on Numerical Analysis, 36 (1999), 491.  doi: 10.1137/S0036142996313002.  Google Scholar

[6]

L. Evans, Partial Differential Equations,, Graduate studies in mathematics, (2010).  doi: 10.1090/gsm/019.  Google Scholar

[7]

G. Froyland, S. Lloyd and N. Santitissadeekorn, Coherent sets for nonautonomous dynamical systems,, Physica D, 239 (2010), 1527.  doi: 10.1016/j.physd.2010.03.009.  Google Scholar

[8]

G. Froyland and K. Padberg, Almost-invariant sets and invariant manifolds - connecting probabilistic and geometric descriptions of coherent structures in flows,, Physica D, 238 (2009), 1507.  doi: 10.1016/j.physd.2009.03.002.  Google Scholar

[9]

G. Froyland, N. Santitissadeekorn and A. Monahan, Transport in time-dependent dynamical systems: Finite-time coherent sets,, Chaos, 20 (2010).  doi: 10.1063/1.3502450.  Google Scholar

[10]

G. Froyland, An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems,, Physica D: Nonlinear Phenomena, 250 (2013), 1.  doi: 10.1016/j.physd.2013.01.013.  Google Scholar

[11]

G. Froyland and M. Dellnitz, Detecting and locating near-optimal almost-invariant sets and cycles,, SIAM Journal on Scientific Computing, 24 (2003), 1839.  doi: 10.1137/S106482750238911X.  Google Scholar

[12]

G. Froyland and O. Junge, On fast computation of finite-time coherent sets using radial basis functions,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 25 (2015).  doi: 10.1063/1.4927640.  Google Scholar

[13]

G. Froyland, O. Junge and P. Koltai, Estimating long term behavior of flows without trajectory integration: The infinitesimal generator approach,, SIAM Journal on Numerical Analysis, 51 (2013), 223.  doi: 10.1137/110819986.  Google Scholar

[14]

G. Froyland and P. Koltai, Estimating long-term behavior of periodically driven flows without trajectory integration,, , ().   Google Scholar

[15]

G. Froyland and K. Padberg-Gehle, Almost-invariant and finite-time coherent sets: Directionality, duration, and diffusion,, in Ergodic Theory, 70 (2014), 171.  doi: 10.1007/978-1-4939-0419-8_9.  Google Scholar

[16]

A. Hadjighasem, D. Karrasch, H. Teramoto and G. Haller, Spectral-clustering approach to lagrangian vortex detection,, Phys. Rev. E, 93 (2016).  doi: 10.1103/PhysRevE.93.063107.  Google Scholar

[17]

G. Haller, Distinguished material surfaces and coherent structures in three-dimensional fluid flows,, Physica D, 149 (2001), 248.  doi: 10.1016/S0167-2789(00)00199-8.  Google Scholar

[18]

G. Haller, A variational theory of hyperbolic Lagrangian coherent structures,, Physica D, 240 (2011), 574.  doi: 10.1016/j.physd.2010.11.010.  Google Scholar

[19]

G. Haller and G. Yuan, Lagrangian coherent structures and mixing in two-dimensional turbulence,, Physica D, 147 (2000), 352.  doi: 10.1016/S0167-2789(00)00142-1.  Google Scholar

[20]

W. Huisinga and B. Schmidt, Metastability and dominant eigenvalues of transfer operators,, in New Algorithms for Macromolecular Simulation, 49 (2006), 167.  doi: 10.1007/3-540-31618-3_11.  Google Scholar

[21]

O. Junge, J. E. Marsden and I. Mezic, Uncertainty in the dynamics of conservative maps,, in Proceedings of the 43rd IEEE Conference on Decision and Control, 2 (2004), 2225.  doi: 10.1109/CDC.2004.1430379.  Google Scholar

[22]

A.-K. Kassam and L. N. Trefethen, Fourth-order time-stepping for stiff pdes,, SIAM Journal on Scientific Computing, 26 (2005), 1214.  doi: 10.1137/S1064827502410633.  Google Scholar

[23]

A. Lasota and M. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics,, Second edition. Applied Mathematical Sciences, (1994).  doi: 10.1007/978-1-4612-4286-4.  Google Scholar

[24]

T. Y. Li, Finite Approximation for the Frobenius-Perron Operator. A Solution to Ulam's Conjecture,, J. Approx. Theory, 17 (1976), 177.  doi: 10.1016/0021-9045(76)90037-X.  Google Scholar

[25]

J.-C. Nave, Computational Science and Engineering,, 2008, (2015).   Google Scholar

[26]

B. Oksendal, Stochastic Differential Equations: An Introduction with Applications,, Springer, ().   Google Scholar

[27]

C. Schütte, A. Fischer, W. Huisinga and P. Deuflhard, A direct approach to conformational dynamics based on hybrid monte carlo,, Journal of Computational Physics, 151 (1999), 146.  doi: 10.1006/jcph.1999.6231.  Google Scholar

[28]

S. M. Ulam, Problems in Modern Mathematics,, Courier Dover Publications, (2004).   Google Scholar

[29]

T. A. Zang, On the rotation and skew-symmetric forms for incompressible flow simulations,, Applied Numerical Mathematics, 7 (1991), 27.  doi: 10.1016/0168-9274(91)90102-6.  Google Scholar

[1]

Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158

[2]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[3]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[4]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[5]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[6]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[7]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[8]

Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071

[9]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[10]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[11]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[12]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[13]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[14]

Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008

[15]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[16]

Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383

[17]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[18]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[19]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[20]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

 Impact Factor: 

Metrics

  • PDF downloads (111)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]