June  2016, 3(2): 179-189. doi: 10.3934/jcd.2016009

Asymptotic invariance and the discretisation of nonautonomous forward attracting sets

1. 

School of Mathematics and Statistics, Huazhong University of Science & Technology, Wuhan 430074

Received  August 2016 Revised  November 2016 Published  January 2017

The $\omega$-limit set $\omega_B$ of a nonautonomous dynamical system generated by a nonautonomous ODE with a positive invariant compact absorbing set $B$ is shown to be asymptotic positive invariant in general and asymptotic negative invariant if, in addition, the vector field is uniformly continuous in time on the absorbing set. This set has been called the forward attracting set of the nonautonomous dynamical system and is related to Vishik's concept of a uniform attractor. If $\omega_B$ is also assumed to be uniformly attracting, then its upper semi continuity in a parameter and the upper semi continuous convergence of its counterparts under discretisation by the implicit Euler scheme are established.
Citation: Peter E. Kloeden. Asymptotic invariance and the discretisation of nonautonomous forward attracting sets. Journal of Computational Dynamics, 2016, 3 (2) : 179-189. doi: 10.3934/jcd.2016009
References:
[1]

M. C. Bortolan, A. N. Carvalho and J. A. Langa, Structure of attractors for skew product semiflows,, J. Differential Equations, 257 (2014), 490.  doi: 10.1016/j.jde.2014.04.008.  Google Scholar

[2]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors of Infinite Dimensional Nonautonomous Dynamical Systems,, Applied Mathematical Sciences, (2013).   Google Scholar

[3]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, Amer. Math. Soc., (2002).   Google Scholar

[4]

A. Hill, Global dissipativity for A-stable methods,, SIAM J. Numer. Anal., 34 (1997), 119.  doi: 10.1137/S0036142994270971.  Google Scholar

[5]

A. Hill, Dissipativity of Runge-Kutta methods in Hilbert spaces,, BIT, 37 (1997), 37.  doi: 10.1007/BF02510171.  Google Scholar

[6]

P. E. Kloeden, Asymptotic invariance and limit sets of general control systems,, J. Differential Equations, 19 (1975), 91.  doi: 10.1016/0022-0396(75)90021-2.  Google Scholar

[7]

P. E. Kloeden and V. S. Kozyakin, Uniform nonautonomous attractors under discretization,, Discrete Contin. Dyn. Systems., 10 (2004), 423.   Google Scholar

[8]

P. E. Kloeden and J. Lorenz, Stable attracting sets in dynamical systems and in their one-step discretizations,, SIAM J. Numer. Analysis, 23 (1986), 986.  doi: 10.1137/0723066.  Google Scholar

[9]

P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors,, Proc. Amer. Mat. Soc., 144 (2016), 259.   Google Scholar

[10]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems,, Amer. Math. Soc., (2011).   Google Scholar

[11]

P. E. Kloeden and H. M. Rodrigues, Dynamics of a class of ODEs more general than almost periodic,, Nonlinear Analysis TMA, 74 (2011), 2695.  doi: 10.1016/j.na.2010.12.025.  Google Scholar

[12]

P. E. Kloeden and M. Yang, Forward attraction in nonautonomous difference equations,, J. Difference Eqns. Applns., 22 (2016), 513.   Google Scholar

[13]

V. Lakshmikantham an S. Leela, Asymptotic self-invariant sets and conditional stability,, in Proc. Inter. Symp. Diff. Equations and Dynamical Systems, (1967), 363.   Google Scholar

[14]

J. P. Lasalle, The Stability of Dynamical Systems,, SIAM-CBMS, (1976).   Google Scholar

[15]

C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems,, Lecture Notes in Mathematics, (2002).   Google Scholar

[16]

S. Sato, T. Matsuo , H. Suzuki and D. Furihata, A Lyapunov-type theorem for dissipative numerical integrators with adaptive time-stepping,, SIAM J. Numer. Anal., 53 (2015), 2505.  doi: 10.1137/140996719.  Google Scholar

[17]

A. M. Stuart and A. R. Humphries, Numerical Analysis and Dynamical Systems,, Cambridge University Press, (1996).   Google Scholar

[18]

M. I. Vishik, Asymptotic Behaviour of Solutions of Evolutionary Equations,, Cambridge University Press, (1992).   Google Scholar

show all references

References:
[1]

M. C. Bortolan, A. N. Carvalho and J. A. Langa, Structure of attractors for skew product semiflows,, J. Differential Equations, 257 (2014), 490.  doi: 10.1016/j.jde.2014.04.008.  Google Scholar

[2]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors of Infinite Dimensional Nonautonomous Dynamical Systems,, Applied Mathematical Sciences, (2013).   Google Scholar

[3]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, Amer. Math. Soc., (2002).   Google Scholar

[4]

A. Hill, Global dissipativity for A-stable methods,, SIAM J. Numer. Anal., 34 (1997), 119.  doi: 10.1137/S0036142994270971.  Google Scholar

[5]

A. Hill, Dissipativity of Runge-Kutta methods in Hilbert spaces,, BIT, 37 (1997), 37.  doi: 10.1007/BF02510171.  Google Scholar

[6]

P. E. Kloeden, Asymptotic invariance and limit sets of general control systems,, J. Differential Equations, 19 (1975), 91.  doi: 10.1016/0022-0396(75)90021-2.  Google Scholar

[7]

P. E. Kloeden and V. S. Kozyakin, Uniform nonautonomous attractors under discretization,, Discrete Contin. Dyn. Systems., 10 (2004), 423.   Google Scholar

[8]

P. E. Kloeden and J. Lorenz, Stable attracting sets in dynamical systems and in their one-step discretizations,, SIAM J. Numer. Analysis, 23 (1986), 986.  doi: 10.1137/0723066.  Google Scholar

[9]

P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors,, Proc. Amer. Mat. Soc., 144 (2016), 259.   Google Scholar

[10]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems,, Amer. Math. Soc., (2011).   Google Scholar

[11]

P. E. Kloeden and H. M. Rodrigues, Dynamics of a class of ODEs more general than almost periodic,, Nonlinear Analysis TMA, 74 (2011), 2695.  doi: 10.1016/j.na.2010.12.025.  Google Scholar

[12]

P. E. Kloeden and M. Yang, Forward attraction in nonautonomous difference equations,, J. Difference Eqns. Applns., 22 (2016), 513.   Google Scholar

[13]

V. Lakshmikantham an S. Leela, Asymptotic self-invariant sets and conditional stability,, in Proc. Inter. Symp. Diff. Equations and Dynamical Systems, (1967), 363.   Google Scholar

[14]

J. P. Lasalle, The Stability of Dynamical Systems,, SIAM-CBMS, (1976).   Google Scholar

[15]

C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems,, Lecture Notes in Mathematics, (2002).   Google Scholar

[16]

S. Sato, T. Matsuo , H. Suzuki and D. Furihata, A Lyapunov-type theorem for dissipative numerical integrators with adaptive time-stepping,, SIAM J. Numer. Anal., 53 (2015), 2505.  doi: 10.1137/140996719.  Google Scholar

[17]

A. M. Stuart and A. R. Humphries, Numerical Analysis and Dynamical Systems,, Cambridge University Press, (1996).   Google Scholar

[18]

M. I. Vishik, Asymptotic Behaviour of Solutions of Evolutionary Equations,, Cambridge University Press, (1992).   Google Scholar

[1]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[2]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[3]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[4]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[5]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[6]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[7]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[8]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[9]

Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031

[10]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[11]

Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1

[12]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[13]

Joan Carles Tatjer, Arturo Vieiro. Dynamics of the QR-flow for upper Hessenberg real matrices. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1359-1403. doi: 10.3934/dcdsb.2020166

[14]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[15]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[16]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[17]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[18]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[19]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[20]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

 Impact Factor: 

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]