- Previous Article
- JCD Home
- This Issue
-
Next Article
Asymptotic invariance and the discretisation of nonautonomous forward attracting sets
Determination of the basin of attraction of a periodic orbit in two dimensions using meshless collocation
1. | Department of Mathematics, University of Sussex, Falmer BN1 9QH, United Kingdom |
In two-dimensional systems, a contraction metric can be characterised by a scalar-valued function. In [9], the function was constructed as solution of a first-order linear Partial Differential Equation (PDE), and numerically constructed using meshless collocation. However, information about the periodic orbit was required, which needed to be approximated.
In this paper, we overcome this requirement by studying a second-order PDE, which does not require any information about the periodic orbit. We show that the second-order PDE has a solution, which defines a contraction metric. We use meshless collocation to approximate the solution and prove error estimates. In particular, we show that the approximation itself is a contraction metric, if the collocation points are dense enough. The method is applied to two examples.
References:
[1] |
D. Angeli, A Lyapunov approach to incremental stability properties,, IEEE Trans. Automat. Contr., 47 (2002), 410.
doi: 10.1109/9.989067. |
[2] |
E. Aylward, P. Parrilo and J.-J. Slotine, Stability and robustness analysis of nonlinear systems via contraction metrics and SOS programming,, Automatica, 44 (2008), 2163.
doi: 10.1016/j.automatica.2007.12.012. |
[3] |
V. Boichenko, G. Leonov and V. Reitmann, Dimension Theory for Ordinary Differential Equations,, volume 141 of Teubner-Texte zur Mathematik [Teubner Texts in Mathematics]. B. G. Teubner Verlagsgesellschaft mbH, (2005).
doi: 10.1007/978-3-322-80055-8. |
[4] |
G. Borg, A Condition for the Existence of Orbitally Stable Solutions of Dynamical Systems,, Kungliga Tekniska Högskolan Handlingar Stockholm 153, (1960). Google Scholar |
[5] |
M. Buhmann, Radial Basis Functions: Theory and Implementations,, volume 12 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, (2003).
doi: 10.1017/CBO9780511543241. |
[6] |
F. Forni and R. Sepulchre, A differential Lyapunov framework for Contraction Analysis,, IEEE Trans. Automat. Control, 59 (2014), 614.
doi: 10.1109/TAC.2013.2285771. |
[7] |
P. Giesl, Necessary conditions for a limit cycle and its basin of attraction,, Nonlinear Anal., 56 (2004), 643.
doi: 10.1016/j.na.2003.07.020. |
[8] |
P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions,, volume 1904 of Lecture Notes in Mathematics. Springer, (1904).
|
[9] |
P. Giesl, On the determination of the basin of attraction of a periodic orbit in two-dimensional systems,, Journal of Mathematical Analysis and Applications, 335 (2007), 461.
doi: 10.1016/j.jmaa.2007.01.069. |
[10] |
P. Giesl, On the determination of the basin of attraction of periodic orbits in three- and higher-dimensional systems,, J. Math. Anal. Appl., 354 (2009), 606.
doi: 10.1016/j.jmaa.2009.01.027. |
[11] |
P. Giesl and S. Hafstein, Construction of a CPA contraction metric for periodic orbits using semidefinite optimization,, Nonlinear Anal., 86 (2013), 114.
doi: 10.1016/j.na.2013.03.012. |
[12] |
P. Giesl and S. Hafstein, Review on computational methods for Lyapunov functions,, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2291.
doi: 10.3934/dcdsb.2015.20.2291. |
[13] |
P. Giesl and H. Wendland, Meshless collocation: Error estimates with application to dynamical systems,, SIAM J. Numer. Anal., 45 (2007), 1723.
doi: 10.1137/060658813. |
[14] |
P. Hartman, Ordinary Differential Equations,, Wiley, (1964).
|
[15] |
P. Hartman and C. Olech, On global asymptotic stability of solutions of differential equations,, Trans. Amer. Math. Soc., 104 (1962), 154.
doi: 10.2307/1993939. |
[16] |
A. Iske, Perfect Centre Placement for Radial Basis Function Methods,, Technical report, (1999). Google Scholar |
[17] |
G. Leonov, I. Burkin and A. Shepelyavyi, Frequency Methods in Oscillation Theory,, Ser. Math. and its Appl., (1996).
doi: 10.1007/978-94-009-0193-3. |
[18] |
D. Lewis, Metric properties of differential equations,, Amer. J. Math., 71 (1949), 294.
doi: 10.2307/2372245. |
[19] |
W. Lohmiller and J.-J. Slotine, On contraction analysis for non-linear systems,, Automatica, 34 (1998), 683.
doi: 10.1016/S0005-1098(98)00019-3. |
[20] |
I. Manchester and J.-J. Slotine, Transverse contraction criteria for existence, stability, and robustness of a limit cycle,, Systems Control Lett., 63 (2014), 32.
doi: 10.1016/j.sysconle.2013.10.005. |
[21] |
J. McMichen, Determination of Areas and Basins of Attraction in Planar Dynamical Systems using Meshless Collocation,, PhD thesis, (2016). Google Scholar |
[22] |
B. Stenström, Dynamical systems with a certain local contraction property,, Math. Scand., 11 (1962), 151.
doi: 10.7146/math.scand.a-10661. |
[23] |
H. Wendland, Error estimates for interpolation by compactly supported radial basis functions of minimal degree,, Journal of Approximation Theory, 93 (1998), 258.
doi: 10.1006/jath.1997.3137. |
[24] |
H. Wendland, Scattered Data Approximation,, volume 17 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, (2005).
|
show all references
References:
[1] |
D. Angeli, A Lyapunov approach to incremental stability properties,, IEEE Trans. Automat. Contr., 47 (2002), 410.
doi: 10.1109/9.989067. |
[2] |
E. Aylward, P. Parrilo and J.-J. Slotine, Stability and robustness analysis of nonlinear systems via contraction metrics and SOS programming,, Automatica, 44 (2008), 2163.
doi: 10.1016/j.automatica.2007.12.012. |
[3] |
V. Boichenko, G. Leonov and V. Reitmann, Dimension Theory for Ordinary Differential Equations,, volume 141 of Teubner-Texte zur Mathematik [Teubner Texts in Mathematics]. B. G. Teubner Verlagsgesellschaft mbH, (2005).
doi: 10.1007/978-3-322-80055-8. |
[4] |
G. Borg, A Condition for the Existence of Orbitally Stable Solutions of Dynamical Systems,, Kungliga Tekniska Högskolan Handlingar Stockholm 153, (1960). Google Scholar |
[5] |
M. Buhmann, Radial Basis Functions: Theory and Implementations,, volume 12 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, (2003).
doi: 10.1017/CBO9780511543241. |
[6] |
F. Forni and R. Sepulchre, A differential Lyapunov framework for Contraction Analysis,, IEEE Trans. Automat. Control, 59 (2014), 614.
doi: 10.1109/TAC.2013.2285771. |
[7] |
P. Giesl, Necessary conditions for a limit cycle and its basin of attraction,, Nonlinear Anal., 56 (2004), 643.
doi: 10.1016/j.na.2003.07.020. |
[8] |
P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions,, volume 1904 of Lecture Notes in Mathematics. Springer, (1904).
|
[9] |
P. Giesl, On the determination of the basin of attraction of a periodic orbit in two-dimensional systems,, Journal of Mathematical Analysis and Applications, 335 (2007), 461.
doi: 10.1016/j.jmaa.2007.01.069. |
[10] |
P. Giesl, On the determination of the basin of attraction of periodic orbits in three- and higher-dimensional systems,, J. Math. Anal. Appl., 354 (2009), 606.
doi: 10.1016/j.jmaa.2009.01.027. |
[11] |
P. Giesl and S. Hafstein, Construction of a CPA contraction metric for periodic orbits using semidefinite optimization,, Nonlinear Anal., 86 (2013), 114.
doi: 10.1016/j.na.2013.03.012. |
[12] |
P. Giesl and S. Hafstein, Review on computational methods for Lyapunov functions,, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2291.
doi: 10.3934/dcdsb.2015.20.2291. |
[13] |
P. Giesl and H. Wendland, Meshless collocation: Error estimates with application to dynamical systems,, SIAM J. Numer. Anal., 45 (2007), 1723.
doi: 10.1137/060658813. |
[14] |
P. Hartman, Ordinary Differential Equations,, Wiley, (1964).
|
[15] |
P. Hartman and C. Olech, On global asymptotic stability of solutions of differential equations,, Trans. Amer. Math. Soc., 104 (1962), 154.
doi: 10.2307/1993939. |
[16] |
A. Iske, Perfect Centre Placement for Radial Basis Function Methods,, Technical report, (1999). Google Scholar |
[17] |
G. Leonov, I. Burkin and A. Shepelyavyi, Frequency Methods in Oscillation Theory,, Ser. Math. and its Appl., (1996).
doi: 10.1007/978-94-009-0193-3. |
[18] |
D. Lewis, Metric properties of differential equations,, Amer. J. Math., 71 (1949), 294.
doi: 10.2307/2372245. |
[19] |
W. Lohmiller and J.-J. Slotine, On contraction analysis for non-linear systems,, Automatica, 34 (1998), 683.
doi: 10.1016/S0005-1098(98)00019-3. |
[20] |
I. Manchester and J.-J. Slotine, Transverse contraction criteria for existence, stability, and robustness of a limit cycle,, Systems Control Lett., 63 (2014), 32.
doi: 10.1016/j.sysconle.2013.10.005. |
[21] |
J. McMichen, Determination of Areas and Basins of Attraction in Planar Dynamical Systems using Meshless Collocation,, PhD thesis, (2016). Google Scholar |
[22] |
B. Stenström, Dynamical systems with a certain local contraction property,, Math. Scand., 11 (1962), 151.
doi: 10.7146/math.scand.a-10661. |
[23] |
H. Wendland, Error estimates for interpolation by compactly supported radial basis functions of minimal degree,, Journal of Approximation Theory, 93 (1998), 258.
doi: 10.1006/jath.1997.3137. |
[24] |
H. Wendland, Scattered Data Approximation,, volume 17 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, (2005).
|
[1] |
Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327 |
[2] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[3] |
Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[4] |
Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027 |
[5] |
Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325 |
[6] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[7] |
Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021014 |
[8] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[9] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[10] |
Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327 |
[11] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[12] |
Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105 |
[13] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[14] |
Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031 |
[15] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[16] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[17] |
Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 |
[18] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[19] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[20] |
Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]