June  2017, 4(1&2): 143-165. doi: 10.3934/jcd.2017005

A Lin's method approach for detecting all canard orbits arising from a folded node

Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

* Corresponding author: b.krauskopf@auckland.ac.nz

Published  March 2018

Canard orbits are relevant objects in slow-fast dynamical systems that organize the spiraling of orbits nearby. In three-dimensional vector fields with two slow and one fast variables, canard orbits arise from the intersection between an attracting and a repelling two-dimensional slow manifold. Special points called folded nodes generate such intersections: in a suitable transverse two-dimensional section Σ, the attracting and repelling slow manifolds are counter-rotating spirals that intersect in a finite number of points. We present an implementation of Lin's method that is able to detect all of these intersection points and, hence, all of the canard orbits arising from a folded node. With a boundary-value-problem setup we compute orbit segments on each slow manifold up to Σ, where we require that the corresponding end points in Σ lie in a one-dimensional subspace known as the Lin space Z. The Lin space Z must be transverse to the slow manifolds and it remains fixed during the detection of canard orbits as zeros of the signed distance along Z. During the computation, a tangency of Z with one of the intersection curves in Σ may arise. To overcome this, we update the Lin space at an intermediate continuation step to detect a double tangency of Z to both curves in Σ, after which the canard detection is able to continue. Our method is demonstrated with the examples of the normal form for a folded node and of the Koper model.

Citation: José Mujica, Bernd Krauskopf, Hinke M. Osinga. A Lin's method approach for detecting all canard orbits arising from a folded node. Journal of Computational Dynamics, 2017, 4 (1&2) : 143-165. doi: 10.3934/jcd.2017005
References:
[1]

V. I. Arnol'd, ed., Encyclopedia of Mathematical Sciences: Dynamical Systems V, Springer-Verlag, Berlin, New York, 1994. Google Scholar

[2]

E. Benoît, Systèmes lents-rapides dans $\mathbb R^3$ et leurs canards, Astérisque, 2 (1983), 159-191.   Google Scholar

[3]

B. Braaksma, Singular Hopf bifurcation in systems with fast and slow variables, J. Nonlinear Sci., 8 (1998), 457-490.  doi: 10.1007/s003329900058.  Google Scholar

[4]

M. Brøns and K. Bar-Eli, Canard explosion and excitation in a model of the Belousov-Zhabotinskii reaction, J. Phys. Chem, 95 (1991), 8706-8713.   Google Scholar

[5]

M. BrønsM. Krupa and M. Wechselberger, Mixed mode oscillations due to the generalized canard phenomenon, Fields Institute Communications, 49 (2006), 39-63.   Google Scholar

[6]

P. De Maesschalck and M. Wechselberger, Neural excitability and singular bifurcations, Journal of Mathematical Neuroscience, 5 (2015), 16.  Google Scholar

[7]

M. DesrochesB. Krauskopf and H. M. Osinga, The geometry of slow manifolds near a folded node, SIAM J. Appl. Dyn. Syst., 7 (2008), 1131-1162.  doi: 10.1137/070708810.  Google Scholar

[8]

M. Desroches, B. Krauskopf and H. M. Osinga, Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system, Chaos, 18 (2008), 015107. doi: 10.1063/1.2799471.  Google Scholar

[9]

M. DesrochesJ. GuckenheimerB. KrauskopfC. KuehnH. M. Osinga and M. Wechselberger, Mixed-mode oscillations with multiple time scales, SIAM Review, 54 (2012), 211-288.  doi: 10.1137/100791233.  Google Scholar

[10]

E. J. Doedel and B. E. Oldeman, AUTO-07p: Continuation and bifurcation software for ordinary differential equations, with major contribution from A. R. Champneys, F. Dercole, T. F. Fairgrieve, Yu. A. Kuznetsov, R. C. Paffenroth, B. Sandstede, X. J. Wang and C. Zhang, 2012. Available from: http://cmvl.cs.concordia.ca/auto/. Google Scholar

[11]

J. DroverJ. RubinJ. Su and B. Ermentrout, Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies, SIAM J. Appl. Math., 65 (2004), 69-92.  doi: 10.1137/S0036139903431233.  Google Scholar

[12]

F. Dumortier and R. Roussarie, Canard Cycles and Center Manifolds, Memoirs of the AMS, 121, 1996.  Google Scholar

[13]

J. P. EnglandB. Krauskopf and H. M. Osinga, Computing two-dimensional global invariant manifolds in slow-fast systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 805-822.  doi: 10.1142/S0218127407017562.  Google Scholar

[14]

I. R. Epstein and K. Showalter, Nonlinear chemical dynamics: Oscillations, patterns, and chaos, J. Phys. Chem., 100 (1996), 13132-13147.  doi: 10.1021/jp953547m.  Google Scholar

[15]

N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971), 193-226.  doi: 10.1512/iumj.1972.21.21017.  Google Scholar

[16]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), 53-98.  doi: 10.1016/0022-0396(79)90152-9.  Google Scholar

[17]

J. GinouxB. Rossetto and L. Chua, Slow invariant manifolds as curvature of the flow of dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 3409-3430.  doi: 10.1142/S0218127408022457.  Google Scholar

[18]

A. GiraldoB. Krauskopf and H. M. Osinga, Saddle invariant objects and their global manifolds in a neighborhood of a homoclinic flip bifurcation of case B, SIAM J. Appl. Dyn. Sys., 16 (2017), 640-686.  doi: 10.1137/16M1097419.  Google Scholar

[19]

A. GoryachevP. Strizhak and R. Kapral, Slow manifold structure and the emergence of mixed-mode oscillations, J. Chem. Phys., 107 (1997), 2881-2889.   Google Scholar

[20]

J. Guckenheimer, Singular Hopf bifurcation in systems with two slow variables, SIAM J. Appl. Dyn. Sys., 7 (2008), 1355-1377.  doi: 10.1137/080718528.  Google Scholar

[21]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, Berlin, New York, 1983.  Google Scholar

[22]

J. GuckenheimerK. Hoffman and W. Weckesser, The forced Van der Pol equation Ⅰ: The slow flow and its bifurcations, SIAM J. Appl. Dyn. Sys., 2 (2003), 1-35.  doi: 10.1137/S1111111102404738.  Google Scholar

[23]

J. Guckenheimer and R. Haiduc, Canards at folded nodes, Mosc. Math. J., 5 (2005), 91-103.   Google Scholar

[24]

J. Guckenheimer and C. Kuehn, Computing slow manifolds of saddle type, SIAM J. Appl. Dyn. Sys., 8 (2009), 854-879.  doi: 10.1137/080741999.  Google Scholar

[25]

A. Haro, M. Canadell, J. Figueras, A. Luque and J. Mondelo, The Parameterization Method for Invariant Manifolds, Applied Mathematical Sciences, vol. 195, Springer, Berlin, New York, 2016.  Google Scholar

[26]

C. HasanB. Krauskopf and H. M. Osinga, Mixed-mode oscillations and twin canard orbits in an autocatalytic chemical reaction, SIAM J. Appl. Dyn. Sys., 16 (2017), 2165-2195.  doi: 10.1137/16M1099248.  Google Scholar

[27]

A. J. Homburg and B. Sandstede, Homoclinic and heteroclinic bifurcations in vector fields, in Handbook of Dynamical Systems III (Edited by H. Broer, F. Takens and B. Hasselblatt), Elsevier, 2010,379-524. doi: 10.1016/S1874-575X(10)00316-4.  Google Scholar

[28]

J. L. HudsonM. Hart and J. Marinko, An experimental study of multiple peak periodic and nonperiodic oscillations in the Belousov-Zhabotinskii reaction, J. Chem. Phys., 71 (1979), 1601-1606.  doi: 10.1063/1.438487.  Google Scholar

[29]

E. M. Izhikevich, Neural excitability, spiking and bursting, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), 1171-1266.  doi: 10.1142/S0218127400000840.  Google Scholar

[30]

E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, MIT Press, Cambridge, 2007.  Google Scholar

[31]

C. K. R. T. Jones, Geometric singular perturbation theory, in Dynamical Systems (Montecatini Terme, 1994) (ed. J. Russell), Springer-Verlag, Berlin, New York, 1995, 44-118.  Google Scholar

[32]

J. Knobloch, Lin's Method for Discrete and Continuous Dynamical Systems and Applications, Habilitationsschrift, TU Ilmenau, 2004. Google Scholar

[33]

J. Knobloch and T. Rieß, Lin's method for heteroclinic chains involving periodic orbits, Nonlinearity, 23 (2010), 23-54.  doi: 10.1088/0951-7715/23/1/002.  Google Scholar

[34]

M. T. M. Koper, Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram, Phys. D, 80 (1995), 72-94.  doi: 10.1016/0167-2789(95)90061-6.  Google Scholar

[35]

M. T. M. Koper and P. Gaspard, Mixed-mode oscillations in a simple model of an electrochemical oscillator, J. Phys. Chem., 95 (1991), 4945-4947.  doi: 10.1021/j100166a009.  Google Scholar

[36]

B. Krauskopf and H. M. Osinga, Computing invariant manifolds via the continuation of orbit segments, in Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems (eds. B. Krauskopf, H. M. Osinga and J. Galán-Vioque), SpringerVerlag, Berlin, New York, 2007,117-154.  Google Scholar

[37]

B. KrauskopfH. M. OsingaE. J. DoedelM. HendersonJ. GuckenheimerA. VladimirskyM. Dellnitz and O. Junge, A survey of methods for computing (un)stable manifolds of vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 763-791.  doi: 10.1142/S0218127405012533.  Google Scholar

[38]

B. Krauskopf and T. Rieß, A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits, Nonlinearity, 21 (2008), 1655-1690.  doi: 10.1088/0951-7715/21/8/001.  Google Scholar

[39]

M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points — fold and canard points in two dimensions, SIAM J. Math. Anal., 33 (2001), 286-314.  doi: 10.1137/S0036141099360919.  Google Scholar

[40]

M. Krupa and P. Szmolyan, Relaxation oscillations and canard explosion, J. Diff. Eq., 174 (2001), 312-368.  doi: 10.1006/jdeq.2000.3929.  Google Scholar

[41]

C. Kuehn, Multiple Time Scale Dynamics, Applied Mathematical Sciences, vol. 191, Springer, Berlin, New York, 2015.  Google Scholar

[42]

Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3$^{rd}$ edition, Springer-Verlag, Berlin, New York, 2004.  Google Scholar

[43]

X.-B. Lin, Using Melnikov's method to solve Shilnikov's problem, Proc. R. Soc. Edinb, 116 (1990), 295-325.  doi: 10.1017/S0308210500031528.  Google Scholar

[44]

A. Milik and P. Szmolyan, Multiple time scales and canards in a chemical oscillator, in Multiple-Time-Scale Dynamical Systems (eds. B. Krauskopf, C. Jones and A. Khibnik), IMA Vol. Math. Appl., vol. 122, Springer-Verlag, Berlin, New York, 2001,117-140.  Google Scholar

[45]

J. Mujica, B. Krauskopf and H. M. Osinga, Tangencies between global invariant manifolds and slow manifolds near a singular Hopf bifurcation, SIAM J. Appl. Dyn. Syst. (in press). Google Scholar

[46]

B. OldemanA. R. Champneys and B. Krauskopf, Homoclinic branch switching: A numerical implementation of Lin's method, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 2977-2999.  doi: 10.1142/S0218127403008326.  Google Scholar

[47]

V. PetrovS. K Scott and K. Showalter, Mixed-mode oscillations in chemical systems, J. Chem. Phys., 97 (1992), 6191-6198.  doi: 10.1063/1.463727.  Google Scholar

[48]

J. D. Rademacher, Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit, J. Diff. Eq., 218 (2005), 390-443.  doi: 10.1016/j.jde.2005.03.016.  Google Scholar

[49]

H. G. RotsteinN. KopellA. M. Zhabotinsky and I. R. Epstein, Canard phenomenon and localization of oscillations in the Belousov-Zhabotinsky reaction with global feedback, J. Chem. Phys., 119 (2003), 8824-8832.  doi: 10.1063/1.1614752.  Google Scholar

[50]

R. A. SchmitzK. R. Graziani and J. L. Hudson, Experimental evidence of chaotic states in the Belousov-Zhabotinskii reaction, J. Chem. Phys., 67 (1977), 3040-3044.  doi: 10.1063/1.435267.  Google Scholar

[51]

S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering, Adison-Wesley, Reading, MA, 1994. Google Scholar

[52]

P. Szmolyan and M. Wechselberger, Canards in $\mathbb R^3$, J. Diff. Eq., 177 (2001), 419-453.   Google Scholar

[53]

F. Tracqui, Organizing centres and symbolic dynamic in the study of mixed-mode oscillations generated by models of biological autocatalytic processes, Acta Biotheoretica, 42 (1994), 147-166.  doi: 10.1007/BF00709487.  Google Scholar

[54]

M. Wechselberger, Existence and bifurcation of canards in $\mathbb{R}^3$ in the case of a folded node, SIAM J. Appl. Dyn. Syst., 4 (2005), 101-139.  doi: 10.1137/030601995.  Google Scholar

[55]

M. Wechselberger, J. Mitry and J. Rinzel, Canard theory and excitability, in Nonautonomous Dynamical Systems in the Life Sciences (eds. P. Kloeden and C. Poetzsche), Lecture Notes in Mathematics, vol. 2102, Springer, Berlin, New York, 2013, 89-132.  Google Scholar

[56]

A. C. Yew, Multipulses of nonlinearly coupled Schrödinger equations, J. Diff. Eq., 173 (2001), 92-137.  doi: 10.1006/jdeq.2000.3922.  Google Scholar

show all references

References:
[1]

V. I. Arnol'd, ed., Encyclopedia of Mathematical Sciences: Dynamical Systems V, Springer-Verlag, Berlin, New York, 1994. Google Scholar

[2]

E. Benoît, Systèmes lents-rapides dans $\mathbb R^3$ et leurs canards, Astérisque, 2 (1983), 159-191.   Google Scholar

[3]

B. Braaksma, Singular Hopf bifurcation in systems with fast and slow variables, J. Nonlinear Sci., 8 (1998), 457-490.  doi: 10.1007/s003329900058.  Google Scholar

[4]

M. Brøns and K. Bar-Eli, Canard explosion and excitation in a model of the Belousov-Zhabotinskii reaction, J. Phys. Chem, 95 (1991), 8706-8713.   Google Scholar

[5]

M. BrønsM. Krupa and M. Wechselberger, Mixed mode oscillations due to the generalized canard phenomenon, Fields Institute Communications, 49 (2006), 39-63.   Google Scholar

[6]

P. De Maesschalck and M. Wechselberger, Neural excitability and singular bifurcations, Journal of Mathematical Neuroscience, 5 (2015), 16.  Google Scholar

[7]

M. DesrochesB. Krauskopf and H. M. Osinga, The geometry of slow manifolds near a folded node, SIAM J. Appl. Dyn. Syst., 7 (2008), 1131-1162.  doi: 10.1137/070708810.  Google Scholar

[8]

M. Desroches, B. Krauskopf and H. M. Osinga, Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system, Chaos, 18 (2008), 015107. doi: 10.1063/1.2799471.  Google Scholar

[9]

M. DesrochesJ. GuckenheimerB. KrauskopfC. KuehnH. M. Osinga and M. Wechselberger, Mixed-mode oscillations with multiple time scales, SIAM Review, 54 (2012), 211-288.  doi: 10.1137/100791233.  Google Scholar

[10]

E. J. Doedel and B. E. Oldeman, AUTO-07p: Continuation and bifurcation software for ordinary differential equations, with major contribution from A. R. Champneys, F. Dercole, T. F. Fairgrieve, Yu. A. Kuznetsov, R. C. Paffenroth, B. Sandstede, X. J. Wang and C. Zhang, 2012. Available from: http://cmvl.cs.concordia.ca/auto/. Google Scholar

[11]

J. DroverJ. RubinJ. Su and B. Ermentrout, Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies, SIAM J. Appl. Math., 65 (2004), 69-92.  doi: 10.1137/S0036139903431233.  Google Scholar

[12]

F. Dumortier and R. Roussarie, Canard Cycles and Center Manifolds, Memoirs of the AMS, 121, 1996.  Google Scholar

[13]

J. P. EnglandB. Krauskopf and H. M. Osinga, Computing two-dimensional global invariant manifolds in slow-fast systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 805-822.  doi: 10.1142/S0218127407017562.  Google Scholar

[14]

I. R. Epstein and K. Showalter, Nonlinear chemical dynamics: Oscillations, patterns, and chaos, J. Phys. Chem., 100 (1996), 13132-13147.  doi: 10.1021/jp953547m.  Google Scholar

[15]

N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971), 193-226.  doi: 10.1512/iumj.1972.21.21017.  Google Scholar

[16]

N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), 53-98.  doi: 10.1016/0022-0396(79)90152-9.  Google Scholar

[17]

J. GinouxB. Rossetto and L. Chua, Slow invariant manifolds as curvature of the flow of dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 3409-3430.  doi: 10.1142/S0218127408022457.  Google Scholar

[18]

A. GiraldoB. Krauskopf and H. M. Osinga, Saddle invariant objects and their global manifolds in a neighborhood of a homoclinic flip bifurcation of case B, SIAM J. Appl. Dyn. Sys., 16 (2017), 640-686.  doi: 10.1137/16M1097419.  Google Scholar

[19]

A. GoryachevP. Strizhak and R. Kapral, Slow manifold structure and the emergence of mixed-mode oscillations, J. Chem. Phys., 107 (1997), 2881-2889.   Google Scholar

[20]

J. Guckenheimer, Singular Hopf bifurcation in systems with two slow variables, SIAM J. Appl. Dyn. Sys., 7 (2008), 1355-1377.  doi: 10.1137/080718528.  Google Scholar

[21]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, Berlin, New York, 1983.  Google Scholar

[22]

J. GuckenheimerK. Hoffman and W. Weckesser, The forced Van der Pol equation Ⅰ: The slow flow and its bifurcations, SIAM J. Appl. Dyn. Sys., 2 (2003), 1-35.  doi: 10.1137/S1111111102404738.  Google Scholar

[23]

J. Guckenheimer and R. Haiduc, Canards at folded nodes, Mosc. Math. J., 5 (2005), 91-103.   Google Scholar

[24]

J. Guckenheimer and C. Kuehn, Computing slow manifolds of saddle type, SIAM J. Appl. Dyn. Sys., 8 (2009), 854-879.  doi: 10.1137/080741999.  Google Scholar

[25]

A. Haro, M. Canadell, J. Figueras, A. Luque and J. Mondelo, The Parameterization Method for Invariant Manifolds, Applied Mathematical Sciences, vol. 195, Springer, Berlin, New York, 2016.  Google Scholar

[26]

C. HasanB. Krauskopf and H. M. Osinga, Mixed-mode oscillations and twin canard orbits in an autocatalytic chemical reaction, SIAM J. Appl. Dyn. Sys., 16 (2017), 2165-2195.  doi: 10.1137/16M1099248.  Google Scholar

[27]

A. J. Homburg and B. Sandstede, Homoclinic and heteroclinic bifurcations in vector fields, in Handbook of Dynamical Systems III (Edited by H. Broer, F. Takens and B. Hasselblatt), Elsevier, 2010,379-524. doi: 10.1016/S1874-575X(10)00316-4.  Google Scholar

[28]

J. L. HudsonM. Hart and J. Marinko, An experimental study of multiple peak periodic and nonperiodic oscillations in the Belousov-Zhabotinskii reaction, J. Chem. Phys., 71 (1979), 1601-1606.  doi: 10.1063/1.438487.  Google Scholar

[29]

E. M. Izhikevich, Neural excitability, spiking and bursting, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), 1171-1266.  doi: 10.1142/S0218127400000840.  Google Scholar

[30]

E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, MIT Press, Cambridge, 2007.  Google Scholar

[31]

C. K. R. T. Jones, Geometric singular perturbation theory, in Dynamical Systems (Montecatini Terme, 1994) (ed. J. Russell), Springer-Verlag, Berlin, New York, 1995, 44-118.  Google Scholar

[32]

J. Knobloch, Lin's Method for Discrete and Continuous Dynamical Systems and Applications, Habilitationsschrift, TU Ilmenau, 2004. Google Scholar

[33]

J. Knobloch and T. Rieß, Lin's method for heteroclinic chains involving periodic orbits, Nonlinearity, 23 (2010), 23-54.  doi: 10.1088/0951-7715/23/1/002.  Google Scholar

[34]

M. T. M. Koper, Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram, Phys. D, 80 (1995), 72-94.  doi: 10.1016/0167-2789(95)90061-6.  Google Scholar

[35]

M. T. M. Koper and P. Gaspard, Mixed-mode oscillations in a simple model of an electrochemical oscillator, J. Phys. Chem., 95 (1991), 4945-4947.  doi: 10.1021/j100166a009.  Google Scholar

[36]

B. Krauskopf and H. M. Osinga, Computing invariant manifolds via the continuation of orbit segments, in Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems (eds. B. Krauskopf, H. M. Osinga and J. Galán-Vioque), SpringerVerlag, Berlin, New York, 2007,117-154.  Google Scholar

[37]

B. KrauskopfH. M. OsingaE. J. DoedelM. HendersonJ. GuckenheimerA. VladimirskyM. Dellnitz and O. Junge, A survey of methods for computing (un)stable manifolds of vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 763-791.  doi: 10.1142/S0218127405012533.  Google Scholar

[38]

B. Krauskopf and T. Rieß, A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits, Nonlinearity, 21 (2008), 1655-1690.  doi: 10.1088/0951-7715/21/8/001.  Google Scholar

[39]

M. Krupa and P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points — fold and canard points in two dimensions, SIAM J. Math. Anal., 33 (2001), 286-314.  doi: 10.1137/S0036141099360919.  Google Scholar

[40]

M. Krupa and P. Szmolyan, Relaxation oscillations and canard explosion, J. Diff. Eq., 174 (2001), 312-368.  doi: 10.1006/jdeq.2000.3929.  Google Scholar

[41]

C. Kuehn, Multiple Time Scale Dynamics, Applied Mathematical Sciences, vol. 191, Springer, Berlin, New York, 2015.  Google Scholar

[42]

Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3$^{rd}$ edition, Springer-Verlag, Berlin, New York, 2004.  Google Scholar

[43]

X.-B. Lin, Using Melnikov's method to solve Shilnikov's problem, Proc. R. Soc. Edinb, 116 (1990), 295-325.  doi: 10.1017/S0308210500031528.  Google Scholar

[44]

A. Milik and P. Szmolyan, Multiple time scales and canards in a chemical oscillator, in Multiple-Time-Scale Dynamical Systems (eds. B. Krauskopf, C. Jones and A. Khibnik), IMA Vol. Math. Appl., vol. 122, Springer-Verlag, Berlin, New York, 2001,117-140.  Google Scholar

[45]

J. Mujica, B. Krauskopf and H. M. Osinga, Tangencies between global invariant manifolds and slow manifolds near a singular Hopf bifurcation, SIAM J. Appl. Dyn. Syst. (in press). Google Scholar

[46]

B. OldemanA. R. Champneys and B. Krauskopf, Homoclinic branch switching: A numerical implementation of Lin's method, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 2977-2999.  doi: 10.1142/S0218127403008326.  Google Scholar

[47]

V. PetrovS. K Scott and K. Showalter, Mixed-mode oscillations in chemical systems, J. Chem. Phys., 97 (1992), 6191-6198.  doi: 10.1063/1.463727.  Google Scholar

[48]

J. D. Rademacher, Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit, J. Diff. Eq., 218 (2005), 390-443.  doi: 10.1016/j.jde.2005.03.016.  Google Scholar

[49]

H. G. RotsteinN. KopellA. M. Zhabotinsky and I. R. Epstein, Canard phenomenon and localization of oscillations in the Belousov-Zhabotinsky reaction with global feedback, J. Chem. Phys., 119 (2003), 8824-8832.  doi: 10.1063/1.1614752.  Google Scholar

[50]

R. A. SchmitzK. R. Graziani and J. L. Hudson, Experimental evidence of chaotic states in the Belousov-Zhabotinskii reaction, J. Chem. Phys., 67 (1977), 3040-3044.  doi: 10.1063/1.435267.  Google Scholar

[51]

S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering, Adison-Wesley, Reading, MA, 1994. Google Scholar

[52]

P. Szmolyan and M. Wechselberger, Canards in $\mathbb R^3$, J. Diff. Eq., 177 (2001), 419-453.   Google Scholar

[53]

F. Tracqui, Organizing centres and symbolic dynamic in the study of mixed-mode oscillations generated by models of biological autocatalytic processes, Acta Biotheoretica, 42 (1994), 147-166.  doi: 10.1007/BF00709487.  Google Scholar

[54]

M. Wechselberger, Existence and bifurcation of canards in $\mathbb{R}^3$ in the case of a folded node, SIAM J. Appl. Dyn. Syst., 4 (2005), 101-139.  doi: 10.1137/030601995.  Google Scholar

[55]

M. Wechselberger, J. Mitry and J. Rinzel, Canard theory and excitability, in Nonautonomous Dynamical Systems in the Life Sciences (eds. P. Kloeden and C. Poetzsche), Lecture Notes in Mathematics, vol. 2102, Springer, Berlin, New York, 2013, 89-132.  Google Scholar

[56]

A. C. Yew, Multipulses of nonlinearly coupled Schrödinger equations, J. Diff. Eq., 173 (2001), 92-137.  doi: 10.1006/jdeq.2000.3922.  Google Scholar

Figure 1.  Lin's method setup for finding canard orbits in system (16) with $\mu = 8.5$. Panel (a1) shows $S^a_{\varepsilon}$ (red surface) and $S^r_{\varepsilon}$ (blue surface) computed from $L^a$ and $L^r$, respectively, up to $\Sigma$. The initial orbit segments $u_a$ (red curve) and $u_r$ (blue curve) are each other's symmetric counterparts and define the Lin space $Z = span\{(0, 0, 1)\}$ (dark-gray line) that defines the Lin gap $\eta$. Panel (b1) shows the situation when the Lin gap is closed and the canard orbit $\xi_1$ (orange) is detected. The relevant objects in $\Sigma$ are shown in panels (a2) and (b2), respectively.
Figure 2.  Illustration of the Lin's method approach to detect canard orbits for (16) with $\mu = 8.5$ in the section $\Sigma$, which is the $(x, z)$-plane. Shown are the intersection sets $\widehat{S}^a_{\varepsilon}$ (red curve) and $\widehat{S}^r_{\varepsilon}$ (blue curve), together with the Lin space $Z$ (vertical dark-gray line). Panels (a1) and (a2) show the detection of the canard orbit $\xi_0$ (cyan), and panels (b1) and (b2) show the detection of $\xi_1$ (orange).
Figure 3.  Three-dimensional view of the slow manifolds $S^a_{\varepsilon}$ and $S^r_{\varepsilon}$, and all canard orbits $\xi_0$-$\xi_4$ of the normal form (16) for $\mu = 8.5$.
Figure 4.  Illustration of the Lin's method approach for (16) with $\mu = 8.5$ and a Lin space $Z$ in general position. Panel (a1) shows when $Z$ becomes tangent to $\widehat{S}^a_{\varepsilon}$ as the end points tracing $\widehat{S}^a_{\varepsilon}$ and $\widehat{S}^r_{\varepsilon}$ move to the right, and panel (a2) shows that it is not possible to detect a canard orbit by keeping $Z$ fixed. Panels (b1) and (b2) show a similar situation when the end points tracing $\widehat{S}^a_{\varepsilon}$ and $\widehat{S}^r_{\varepsilon}$ move to the left.
Figure 5.  Three-dimensional view of the slow manifolds computed up to section $\Sigma \subset \{z = -0.8\}$ of the Koper model (19) for the parameters values given by (20).
Figure 6.  Illustration of the Lin's method approach to detect canard orbits of (19) with parameter values as (20) in section $\Sigma$, represented by the $(x, y)$-plane. Shown are the intersection sets $\widehat{S}^a_{\varepsilon}$ (red curve) and $\widehat{S}^r_{\varepsilon}$ (blue curve), together with the corresponding Lin space (dark-gray line). Panel (a1) shows the detection of the canard orbit $\xi_0$ (cyan) and panel (a2) shows a tangency of the Lin space $Z_0$ with $\widehat{S}^r_{\varepsilon}$. Panels (b1) and (b2) show the detection of $\xi_1$ (orange) and $\xi_2$ (green), respectively.
Figure 7.  Intermediate step (Ⅲ) for the detection of a simultaneous tangency of the Lin space with $\widehat{S}^a_{\varepsilon}$ and $\widehat{S}^r_{\varepsilon}$, for the Koper model (19) with parameters as in (20). Panel (a1) shows the detection of the points defining the Lin space $Z_1$ and panel (a2) shows the corresponding fold of $\beta_a$. Panels (b1) and (b2) show step (Ⅲ) for the detection of the points defining the Lin space $Z_2$.
Figure 8.  Slow manifolds and the canard orbits $\xi_0$-$\xi_5$ of the Koper model (19) for the parameter values (20).
[1]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[2]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[3]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[4]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[5]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[6]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[7]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[10]

Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021002

[11]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[12]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[13]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[14]

Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134

[15]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[16]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[17]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[18]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[19]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[20]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

 Impact Factor: 

Metrics

  • PDF downloads (123)
  • HTML views (1601)
  • Cited by (2)

Other articles
by authors

[Back to Top]