- Previous Article
- JCD Home
- This Issue
-
Next Article
A Lin's method approach for detecting all canard orbits arising from a folded node
Addendum to "Optimal control of multiscale systems using reduced-order models"
1. | Institute of Mathematics, Freie Universität Berlin, 14195 Berlin, Germany |
2. | Department of Mathematics, Imperial College London, London SW7 2AZ, UK |
References:
[1] |
C. Hartmann, J. C. Latorre, G. A. Pavliotis and W. Zhang,
Optimal control of multiscale systems using reduced-order models, J. Comput. Dyn., 1 (2014), 279-306.
doi: 10.3934/jcd.2014.1.279. |
show all references
References:
[1] |
C. Hartmann, J. C. Latorre, G. A. Pavliotis and W. Zhang,
Optimal control of multiscale systems using reduced-order models, J. Comput. Dyn., 1 (2014), 279-306.
doi: 10.3934/jcd.2014.1.279. |
[1] |
Carsten Hartmann, Juan C. Latorre, Wei Zhang, Grigorios A. Pavliotis. Optimal control of multiscale systems using reduced-order models. Journal of Computational Dynamics, 2014, 1 (2) : 279-306. doi: 10.3934/jcd.2014.1.279 |
[2] |
Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1447-1464. doi: 10.3934/dcdss.2020375 |
[3] |
Lingling Lv, Wei He, Xianxing Liu, Lei Zhang. A robust reduced-order observers design approach for linear discrete periodic systems. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2799-2812. doi: 10.3934/jimo.2019081 |
[4] |
Yuanran Zhu, Huan Lei. Effective Mori-Zwanzig equation for the reduced-order modeling of stochastic systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 959-982. doi: 10.3934/dcdss.2021096 |
[5] |
Luigi C. Berselli, Tae-Yeon Kim, Leo G. Rebholz. Analysis of a reduced-order approximate deconvolution model and its interpretation as a Navier-Stokes-Voigt regularization. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1027-1050. doi: 10.3934/dcdsb.2016.21.1027 |
[6] |
Zhendong Luo. A reduced-order SMFVE extrapolation algorithm based on POD technique and CN method for the non-stationary Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1189-1212. doi: 10.3934/dcdsb.2015.20.1189 |
[7] |
Cédric M. Campos, Sina Ober-Blöbaum, Emmanuel Trélat. High order variational integrators in the optimal control of mechanical systems. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4193-4223. doi: 10.3934/dcds.2015.35.4193 |
[8] |
Zhenguo Bai, Yicang Zhou. Addendum. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 915-916. doi: 10.3934/dcdsb.2011.15.915 |
[9] |
Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial and Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861 |
[10] |
Robert Baier, Matthias Gerdts, Ilaria Xausa. Approximation of reachable sets using optimal control algorithms. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 519-548. doi: 10.3934/naco.2013.3.519 |
[11] |
Craig Collins, K. Renee Fister, Bethany Key, Mary Williams. Blasting neuroblastoma using optimal control of chemotherapy. Mathematical Biosciences & Engineering, 2009, 6 (3) : 451-467. doi: 10.3934/mbe.2009.6.451 |
[12] |
Akram Kheirabadi, Asadollah Mahmoudzadeh Vaziri, Sohrab Effati. Solving optimal control problem using Hermite wavelet. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 101-112. doi: 10.3934/naco.2019008 |
[13] |
Debra Lewis. Modeling student engagement using optimal control theory. Journal of Geometric Mechanics, 2022, 14 (1) : 131-150. doi: 10.3934/jgm.2021032 |
[14] |
Quyen Tran, Harbir Antil, Hugo Díaz. Optimal control of parameterized stationary Maxwell's system: Reduced basis, convergence analysis, and a posteriori error estimates. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022003 |
[15] |
Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929 |
[16] |
Y. Gong, X. Xiang. A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales. Journal of Industrial and Management Optimization, 2009, 5 (1) : 1-10. doi: 10.3934/jimo.2009.5.1 |
[17] |
Jingang Zhao, Chi Zhang. Finite-horizon optimal control of discrete-time linear systems with completely unknown dynamics using Q-learning. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1471-1483. doi: 10.3934/jimo.2020030 |
[18] |
Claus Kirchner, Michael Herty, Simone Göttlich, Axel Klar. Optimal control for continuous supply network models. Networks and Heterogeneous Media, 2006, 1 (4) : 675-688. doi: 10.3934/nhm.2006.1.675 |
[19] |
Maria do Rosário de Pinho, Helmut Maurer, Hasnaa Zidani. Optimal control of normalized SIMR models with vaccination and treatment. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 79-99. doi: 10.3934/dcdsb.2018006 |
[20] |
Jing Li, Panos Stinis. Mori-Zwanzig reduced models for uncertainty quantification. Journal of Computational Dynamics, 2019, 6 (1) : 39-68. doi: 10.3934/jcd.2019002 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]