December  2019, 6(2): 147-169. doi: 10.3934/jcd.2019008

Efficient time integration methods for Gross-Pitaevskii equations with rotation term

1. 

Universitat Jaume I, Departament de Matemàtiques, 12071 Castellón, Spain

2. 

Universitat Politècnica de València, Instituto Universitario de Matemática Multidisciplinar, 46022 Valencia, Spain

3. 

Universitat Jaume I, IMAC and Departament de Matemàtiques, 12071 Castellón, Spain

4. 

Leopold-Franzens-Universität Innsbruck, Institut für Mathematik, 6020 Innsbruck, Austria

Received  March 2019 Revised  August 2019 Published  November 2019

The objective of this work is the introduction and investigation of favourable time integration methods for the Gross-Pitaevskii equation with rotation term. Employing a reformulation in rotating Lagrangian coordinates, the equation takes the form of a nonlinear Schrödinger equation involving a space-time-dependent potential. A natural approach that combines commutator-free quasi-Magnus exponential integrators with operator splitting methods and Fourier spectral space discretisations is proposed. Furthermore, the special structure of the Hamilton operator permits the design of specifically tailored schemes. Numerical experiments confirm the good performance of the resulting exponential integrators.

Citation: Philipp Bader, Sergio Blanes, Fernando Casas, Mechthild Thalhammer. Efficient time integration methods for Gross-Pitaevskii equations with rotation term. Journal of Computational Dynamics, 2019, 6 (2) : 147-169. doi: 10.3934/jcd.2019008
References:
[1]

J. R. Abo-ShaeerC. RamanJ. M. Vogels and W. Ketterle, Observation of vortex lattices in Bose-Einstein condensates, Science, 292 (2001), 476-479.  doi: 10.1126/science.1060182.  Google Scholar

[2]

A. Alvermann and H. Fehske, High-order commutator-free exponential time-propagation of driven quantum systems, J. Comput. Phys., 230 (2011), 5930-5956.  doi: 10.1016/j.jcp.2011.04.006.  Google Scholar

[3]

A. AlvermannH. Fehske and P. B. Littlewood, Numerical time propagation of quantum systems in radiation fields, New. J. Phys., 14 (2012), 22pp.  doi: 10.1088/1367-2630/14/10/105008.  Google Scholar

[4]

M. H. AndersonJ. R. EnsherM. R. MatthewaC. E. Wieman and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, 269 (1995), 198-201.  doi: 10.1126/science.269.5221.198.  Google Scholar

[5]

X. AntoineC. Besse and W. Bao, Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Commun., 184 (2013), 2621-2633.  doi: 10.1016/j.cpc.2013.07.012.  Google Scholar

[6]

P. Bader, Geometric integrators for Schrödinger equations, Ph.D thesis, Universitat Politécnica de Valencia, 2014. doi: 10.4995/Thesis/10251/38716.  Google Scholar

[7]

P. Bader, Fourier-splitting methods for the dynamics of rotating Bose-Einstein condensates, J. Comput. Appl. Math., 336 (2018), 267-280.  doi: 10.1016/j.cam.2017.12.038.  Google Scholar

[8]

P. BaderS. Blanes and N. Kopylov, Exponential propagators for the Schrödinger equation with a time-dependent potential, J. Chem. Phys., 148 (2018).  doi: 10.1063/1.5036838.  Google Scholar

[9]

W. BaoH. Li and J. Shen, A generalized Laguerre-Fourier-Hermite pseudospectral method for computing the dynamics of rotating Bose-Einstein condensates, SIAM J. Sci. Comput., 31 (2009), 3685-3711.  doi: 10.1137/080739811.  Google Scholar

[10]

W. BaoD. MarahrensQ. Tang and Y. Zhang, A simple and efficient numerical method for computing the dynamics of rotating Bose-Einstein condensates via rotating Lagrangian coordinates, SIAM J. Sci. Comput., 35 (2013), A2671-A2695.  doi: 10.1137/130911111.  Google Scholar

[11]

C. BesseG. Dujardin and I. Lacroix-Violet, High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose-Einstein condensates, SIAM J. Numer. Anal., 55 (2017), 1387-1411.  doi: 10.1137/15M1029047.  Google Scholar

[12]

S. Blanes, Time-average on the numerical integration of nonautonomous differential equations, SIAM J. Numer. Anal., 56 (2018), 2513-2536.  doi: 10.1137/17M1156150.  Google Scholar

[13]

S. BlanesF. CasasC. González and M. Thalhammer, Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for nonautonomous linear Schrödinger equations, IMA J. Numer. Anal., 38 (2018), 743-778.  doi: 10.1093/imanum/drx012.  Google Scholar

[14]

S. BlanesF. CasasJ. A. Oteo and J. Ros, The Magnus expansion and some of its applications, Phys. Rep., 470 (2009), 151-238.  doi: 10.1016/j.physrep.2008.11.001.  Google Scholar

[15]

S. BlanesF. Casas and M. Thalhammer, High-order commutator-free quasi-Magnus exponential integrators for non-autonomous linear evolution equations, Comput. Phys. Commun., 220 (2017), 243-262.  doi: 10.1016/j.cpc.2017.07.016.  Google Scholar

[16]

S. BlanesF. Casas and M. Thalhammer, Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for nonautonomous linear evolution equations of parabolic type, IMA J. Numer. Anal., 38 (2018), 743-778.  doi: 10.1093/imanum/drx012.  Google Scholar

[17]

S. BlanesF. DieleC. Marangi and S. Ragni, Splitting and composition methods for explicit time dependence in separable dynamical systems, J. Comput. Appl. Math., 235 (2010), 646-659.  doi: 10.1016/j.cam.2010.06.018.  Google Scholar

[18]

S. Blanes and P. C. Moan, Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nyström methods, J. Comput. Appl. Math., 142 (2002), 313-330.  doi: 10.1016/S0377-0427(01)00492-7.  Google Scholar

[19]

C. C. BradleyC. A. SackettJ. J. Tollett and R. G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interaction, Phys. Rev. Lett., 75 (1995), 1687-1690.  doi: 10.1103/PhysRevLett.75.1687.  Google Scholar

[20]

I. Danaila and B. Protas, Computation of ground states of the Gross-Pitaevskii functional via Riemannian optimization, SIAM J. Sci. Comput., 39 (2017), B1102-B1129.  doi: 10.1137/17M1121974.  Google Scholar

[21]

K. B. DavisM. O. MewesM. R. AndrewsN. J. van DrutenD. S. DurfeeD. M. Kurn and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., 75 (1995), 3969-3973.  doi: 10.1103/PhysRevLett.75.3969.  Google Scholar

[22]

H. HofstätterO. Koch and M. Thalhammer, Convergence analysis of high-order time-splitting pseudo-spectral methods for Gross-Pitaevskii equations with rotation term, Numer. Math., 127 (2014), 315-364.  doi: 10.1007/s00211-013-0586-9.  Google Scholar

[23]

A. Iserles and S. P. Nørsett, On the solution of linear differential equations in Lie groups, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 983-1019.  doi: 10.1098/rsta.1999.0362.  Google Scholar

[24]

A. Iserles and G. R. W. Quispel, Why Geometric Numerical Integration?, Discrete Mechanics, Geometric Integration and Lie-Butcher Series, 267, Springer, Cham, 2018, 1-28. doi: 10.1007/978-3-030-01397-4_1.  Google Scholar

[25]

K. W. MadisonF. ChevyV. Bretin and J. Dalibard, Stationary states of a rotating Bose-Einstein condensates: Routes to vortex nucleation, Phys. Rev. Lett., 86 (2001), 4443-4446.  doi: 10.1103/PhysRevLett.86.4443.  Google Scholar

[26]

W. Magnus, On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math., 7 (1954), 649-673.  doi: 10.1002/cpa.3160070404.  Google Scholar

[27]

R. McLachlan and G. R. W. Quispel, Splitting methods, Acta Numer., 11 (2002), 341-434.  doi: 10.1017/S0962492902000053.  Google Scholar

[28]

H. Munthe-Kaas and B. Owren, Computations in a free Lie algebra, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 957-981.  doi: 10.1098/rsta.1999.0361.  Google Scholar

[29]

M. Thalhammer, A fourth-order commutator-free exponential integrator for nonautonomous differential equations, SIAM J. Numer. Anal., 44 (2006), 851-864.  doi: 10.1137/05063042.  Google Scholar

[30]

M. Thalhammer, Convergence analysis of high-order time-splitting pseudospectral methods for nonlinear Schrödinger equations, SIAM J. Numer. Anal., 50 (2012), 3231-3258.  doi: 10.1137/120866373.  Google Scholar

[31]

M. Thalhammer and J. Abhau, A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations, J. Comput. Phys., 231 (2012), 6665-6681.  doi: 10.1016/j.jcp.2012.05.031.  Google Scholar

[32]

R. Zeng and Y. Zhang, Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates, Comput. Phys. Comm., 180 (2009), 854-860.  doi: 10.1016/j.cpc.2008.12.003.  Google Scholar

show all references

References:
[1]

J. R. Abo-ShaeerC. RamanJ. M. Vogels and W. Ketterle, Observation of vortex lattices in Bose-Einstein condensates, Science, 292 (2001), 476-479.  doi: 10.1126/science.1060182.  Google Scholar

[2]

A. Alvermann and H. Fehske, High-order commutator-free exponential time-propagation of driven quantum systems, J. Comput. Phys., 230 (2011), 5930-5956.  doi: 10.1016/j.jcp.2011.04.006.  Google Scholar

[3]

A. AlvermannH. Fehske and P. B. Littlewood, Numerical time propagation of quantum systems in radiation fields, New. J. Phys., 14 (2012), 22pp.  doi: 10.1088/1367-2630/14/10/105008.  Google Scholar

[4]

M. H. AndersonJ. R. EnsherM. R. MatthewaC. E. Wieman and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, 269 (1995), 198-201.  doi: 10.1126/science.269.5221.198.  Google Scholar

[5]

X. AntoineC. Besse and W. Bao, Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Commun., 184 (2013), 2621-2633.  doi: 10.1016/j.cpc.2013.07.012.  Google Scholar

[6]

P. Bader, Geometric integrators for Schrödinger equations, Ph.D thesis, Universitat Politécnica de Valencia, 2014. doi: 10.4995/Thesis/10251/38716.  Google Scholar

[7]

P. Bader, Fourier-splitting methods for the dynamics of rotating Bose-Einstein condensates, J. Comput. Appl. Math., 336 (2018), 267-280.  doi: 10.1016/j.cam.2017.12.038.  Google Scholar

[8]

P. BaderS. Blanes and N. Kopylov, Exponential propagators for the Schrödinger equation with a time-dependent potential, J. Chem. Phys., 148 (2018).  doi: 10.1063/1.5036838.  Google Scholar

[9]

W. BaoH. Li and J. Shen, A generalized Laguerre-Fourier-Hermite pseudospectral method for computing the dynamics of rotating Bose-Einstein condensates, SIAM J. Sci. Comput., 31 (2009), 3685-3711.  doi: 10.1137/080739811.  Google Scholar

[10]

W. BaoD. MarahrensQ. Tang and Y. Zhang, A simple and efficient numerical method for computing the dynamics of rotating Bose-Einstein condensates via rotating Lagrangian coordinates, SIAM J. Sci. Comput., 35 (2013), A2671-A2695.  doi: 10.1137/130911111.  Google Scholar

[11]

C. BesseG. Dujardin and I. Lacroix-Violet, High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose-Einstein condensates, SIAM J. Numer. Anal., 55 (2017), 1387-1411.  doi: 10.1137/15M1029047.  Google Scholar

[12]

S. Blanes, Time-average on the numerical integration of nonautonomous differential equations, SIAM J. Numer. Anal., 56 (2018), 2513-2536.  doi: 10.1137/17M1156150.  Google Scholar

[13]

S. BlanesF. CasasC. González and M. Thalhammer, Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for nonautonomous linear Schrödinger equations, IMA J. Numer. Anal., 38 (2018), 743-778.  doi: 10.1093/imanum/drx012.  Google Scholar

[14]

S. BlanesF. CasasJ. A. Oteo and J. Ros, The Magnus expansion and some of its applications, Phys. Rep., 470 (2009), 151-238.  doi: 10.1016/j.physrep.2008.11.001.  Google Scholar

[15]

S. BlanesF. Casas and M. Thalhammer, High-order commutator-free quasi-Magnus exponential integrators for non-autonomous linear evolution equations, Comput. Phys. Commun., 220 (2017), 243-262.  doi: 10.1016/j.cpc.2017.07.016.  Google Scholar

[16]

S. BlanesF. Casas and M. Thalhammer, Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for nonautonomous linear evolution equations of parabolic type, IMA J. Numer. Anal., 38 (2018), 743-778.  doi: 10.1093/imanum/drx012.  Google Scholar

[17]

S. BlanesF. DieleC. Marangi and S. Ragni, Splitting and composition methods for explicit time dependence in separable dynamical systems, J. Comput. Appl. Math., 235 (2010), 646-659.  doi: 10.1016/j.cam.2010.06.018.  Google Scholar

[18]

S. Blanes and P. C. Moan, Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nyström methods, J. Comput. Appl. Math., 142 (2002), 313-330.  doi: 10.1016/S0377-0427(01)00492-7.  Google Scholar

[19]

C. C. BradleyC. A. SackettJ. J. Tollett and R. G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interaction, Phys. Rev. Lett., 75 (1995), 1687-1690.  doi: 10.1103/PhysRevLett.75.1687.  Google Scholar

[20]

I. Danaila and B. Protas, Computation of ground states of the Gross-Pitaevskii functional via Riemannian optimization, SIAM J. Sci. Comput., 39 (2017), B1102-B1129.  doi: 10.1137/17M1121974.  Google Scholar

[21]

K. B. DavisM. O. MewesM. R. AndrewsN. J. van DrutenD. S. DurfeeD. M. Kurn and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., 75 (1995), 3969-3973.  doi: 10.1103/PhysRevLett.75.3969.  Google Scholar

[22]

H. HofstätterO. Koch and M. Thalhammer, Convergence analysis of high-order time-splitting pseudo-spectral methods for Gross-Pitaevskii equations with rotation term, Numer. Math., 127 (2014), 315-364.  doi: 10.1007/s00211-013-0586-9.  Google Scholar

[23]

A. Iserles and S. P. Nørsett, On the solution of linear differential equations in Lie groups, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 983-1019.  doi: 10.1098/rsta.1999.0362.  Google Scholar

[24]

A. Iserles and G. R. W. Quispel, Why Geometric Numerical Integration?, Discrete Mechanics, Geometric Integration and Lie-Butcher Series, 267, Springer, Cham, 2018, 1-28. doi: 10.1007/978-3-030-01397-4_1.  Google Scholar

[25]

K. W. MadisonF. ChevyV. Bretin and J. Dalibard, Stationary states of a rotating Bose-Einstein condensates: Routes to vortex nucleation, Phys. Rev. Lett., 86 (2001), 4443-4446.  doi: 10.1103/PhysRevLett.86.4443.  Google Scholar

[26]

W. Magnus, On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math., 7 (1954), 649-673.  doi: 10.1002/cpa.3160070404.  Google Scholar

[27]

R. McLachlan and G. R. W. Quispel, Splitting methods, Acta Numer., 11 (2002), 341-434.  doi: 10.1017/S0962492902000053.  Google Scholar

[28]

H. Munthe-Kaas and B. Owren, Computations in a free Lie algebra, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 957-981.  doi: 10.1098/rsta.1999.0361.  Google Scholar

[29]

M. Thalhammer, A fourth-order commutator-free exponential integrator for nonautonomous differential equations, SIAM J. Numer. Anal., 44 (2006), 851-864.  doi: 10.1137/05063042.  Google Scholar

[30]

M. Thalhammer, Convergence analysis of high-order time-splitting pseudospectral methods for nonlinear Schrödinger equations, SIAM J. Numer. Anal., 50 (2012), 3231-3258.  doi: 10.1137/120866373.  Google Scholar

[31]

M. Thalhammer and J. Abhau, A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations, J. Comput. Phys., 231 (2012), 6665-6681.  doi: 10.1016/j.jcp.2012.05.031.  Google Scholar

[32]

R. Zeng and Y. Zhang, Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates, Comput. Phys. Comm., 180 (2009), 854-860.  doi: 10.1016/j.cpc.2008.12.003.  Google Scholar

Figure 1.  Overview of exponential time integration methods. Commutator-free quasi-Magnus exponential integrators (CFQM, order $ p $, number of compositions $ J $, number of quadrature nodes $ K $) or modified commutator-free quasi-Magnus exponential integrator (Scheme BBK, order $ p = 6 $), respectively, combined with operator splitting methods (order $ p $, number of compositions $ s $)
Figure 2.  Time integration of non-autonomous linear test equation in two (left) and three (right) space dimensions by quasi-Magnus exponential integrators and operator splitting methods, see (8), (21), and Figure 1. Global errors versus time stepsizes (first row) or number of fast Fourier transforms and inverse fast Fourier transforms (second row), respectively
Figure 3.  Time integration of non-autonomous nonlinear test equation in two (left) and three (right) space dimensions with $ \vartheta = 1 $ by quasi-Magnus exponential integrators and operator splitting methods, see (8), (21), and Figure 1. Global errors versus time stepsizes (first row) or number of fast Fourier transforms and inverse fast Fourier transforms (second row), respectively
Figure 4.  Time integration of non-autonomous nonlinear test equation in two (left) and three (right) space dimensions with $ \vartheta = 10 $ by quasi-Magnus exponential integrators and operator splitting methods, see (8), (21), and Figure 1. Global errors versus time stepsizes (first row) or number of fast Fourier transforms and inverse fast Fourier transforms (second row), respectively
Figure 5.  Time integration of two-dimensional rotational Gross-Pitaevskii equation (22) by sixth-order modified CFQM exponential integrator (20) and optimised sixth-order splitting method proposed in [18]. Solution profile $ |{\psi(x, t)}|^2 $ displayed for spatial section $ x \in [- 5, 5]^2 $ and time $ t = 15 $. Consistent results obtained by time-splitting generalised-Laguerre-Fourier spectral methods [22,Eq. (7)-(8),Fig. 2]
[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[2]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[3]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[4]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[5]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[6]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[7]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

[8]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020392

[9]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[10]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[11]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[12]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[13]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[14]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[15]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[16]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[17]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[18]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[19]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[20]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

 Impact Factor: 

Metrics

  • PDF downloads (199)
  • HTML views (354)
  • Cited by (0)

[Back to Top]