
-
Previous Article
Deep learning as optimal control problems: Models and numerical methods
- JCD Home
- This Issue
-
Next Article
Preface Special issue in honor of Reinout Quispel
Efficient time integration methods for Gross-Pitaevskii equations with rotation term
1. | Universitat Jaume I, Departament de Matemàtiques, 12071 Castellón, Spain |
2. | Universitat Politècnica de València, Instituto Universitario de Matemática Multidisciplinar, 46022 Valencia, Spain |
3. | Universitat Jaume I, IMAC and Departament de Matemàtiques, 12071 Castellón, Spain |
4. | Leopold-Franzens-Universität Innsbruck, Institut für Mathematik, 6020 Innsbruck, Austria |
The objective of this work is the introduction and investigation of favourable time integration methods for the Gross-Pitaevskii equation with rotation term. Employing a reformulation in rotating Lagrangian coordinates, the equation takes the form of a nonlinear Schrödinger equation involving a space-time-dependent potential. A natural approach that combines commutator-free quasi-Magnus exponential integrators with operator splitting methods and Fourier spectral space discretisations is proposed. Furthermore, the special structure of the Hamilton operator permits the design of specifically tailored schemes. Numerical experiments confirm the good performance of the resulting exponential integrators.
References:
[1] |
J. R. Abo-Shaeer, C. Raman, J. M. Vogels and W. Ketterle,
Observation of vortex lattices in Bose-Einstein condensates, Science, 292 (2001), 476-479.
doi: 10.1126/science.1060182. |
[2] |
A. Alvermann and H. Fehske,
High-order commutator-free exponential time-propagation of driven quantum systems, J. Comput. Phys., 230 (2011), 5930-5956.
doi: 10.1016/j.jcp.2011.04.006. |
[3] |
A. Alvermann, H. Fehske and P. B. Littlewood,
Numerical time propagation of quantum systems in radiation fields, New. J. Phys., 14 (2012), 22pp.
doi: 10.1088/1367-2630/14/10/105008. |
[4] |
M. H. Anderson, J. R. Ensher, M. R. Matthewa, C. E. Wieman and E. A. Cornell,
Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, 269 (1995), 198-201.
doi: 10.1126/science.269.5221.198. |
[5] |
X. Antoine, C. Besse and W. Bao,
Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Commun., 184 (2013), 2621-2633.
doi: 10.1016/j.cpc.2013.07.012. |
[6] |
P. Bader, Geometric integrators for Schrödinger equations, Ph.D thesis, Universitat Politécnica de Valencia, 2014.
doi: 10.4995/Thesis/10251/38716. |
[7] |
P. Bader,
Fourier-splitting methods for the dynamics of rotating Bose-Einstein condensates, J. Comput. Appl. Math., 336 (2018), 267-280.
doi: 10.1016/j.cam.2017.12.038. |
[8] |
P. Bader, S. Blanes and N. Kopylov,
Exponential propagators for the Schrödinger equation with a time-dependent potential, J. Chem. Phys., 148 (2018).
doi: 10.1063/1.5036838. |
[9] |
W. Bao, H. Li and J. Shen,
A generalized Laguerre-Fourier-Hermite pseudospectral method for computing the dynamics of rotating Bose-Einstein condensates, SIAM J. Sci. Comput., 31 (2009), 3685-3711.
doi: 10.1137/080739811. |
[10] |
W. Bao, D. Marahrens, Q. Tang and Y. Zhang,
A simple and efficient numerical method for computing the dynamics of rotating Bose-Einstein condensates via rotating Lagrangian coordinates, SIAM J. Sci. Comput., 35 (2013), A2671-A2695.
doi: 10.1137/130911111. |
[11] |
C. Besse, G. Dujardin and I. Lacroix-Violet,
High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose-Einstein condensates, SIAM J. Numer. Anal., 55 (2017), 1387-1411.
doi: 10.1137/15M1029047. |
[12] |
S. Blanes,
Time-average on the numerical integration of nonautonomous differential equations, SIAM J. Numer. Anal., 56 (2018), 2513-2536.
doi: 10.1137/17M1156150. |
[13] |
S. Blanes, F. Casas, C. González and M. Thalhammer,
Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for nonautonomous linear Schrödinger equations, IMA J. Numer. Anal., 38 (2018), 743-778.
doi: 10.1093/imanum/drx012. |
[14] |
S. Blanes, F. Casas, J. A. Oteo and J. Ros,
The Magnus expansion and some of its applications, Phys. Rep., 470 (2009), 151-238.
doi: 10.1016/j.physrep.2008.11.001. |
[15] |
S. Blanes, F. Casas and M. Thalhammer,
High-order commutator-free quasi-Magnus exponential integrators for non-autonomous linear evolution equations, Comput. Phys. Commun., 220 (2017), 243-262.
doi: 10.1016/j.cpc.2017.07.016. |
[16] |
S. Blanes, F. Casas and M. Thalhammer,
Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for nonautonomous linear evolution equations of parabolic type, IMA J. Numer. Anal., 38 (2018), 743-778.
doi: 10.1093/imanum/drx012. |
[17] |
S. Blanes, F. Diele, C. Marangi and S. Ragni,
Splitting and composition methods for explicit time dependence in separable dynamical systems, J. Comput. Appl. Math., 235 (2010), 646-659.
doi: 10.1016/j.cam.2010.06.018. |
[18] |
S. Blanes and P. C. Moan,
Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nyström methods, J. Comput. Appl. Math., 142 (2002), 313-330.
doi: 10.1016/S0377-0427(01)00492-7. |
[19] |
C. C. Bradley, C. A. Sackett, J. J. Tollett and R. G. Hulet,
Evidence of Bose-Einstein condensation in an atomic gas with attractive interaction, Phys. Rev. Lett., 75 (1995), 1687-1690.
doi: 10.1103/PhysRevLett.75.1687. |
[20] |
I. Danaila and B. Protas,
Computation of ground states of the Gross-Pitaevskii functional via Riemannian optimization, SIAM J. Sci. Comput., 39 (2017), B1102-B1129.
doi: 10.1137/17M1121974. |
[21] |
K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn and W. Ketterle,
Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., 75 (1995), 3969-3973.
doi: 10.1103/PhysRevLett.75.3969. |
[22] |
H. Hofstätter, O. Koch and M. Thalhammer,
Convergence analysis of high-order time-splitting pseudo-spectral methods for Gross-Pitaevskii equations with rotation term, Numer. Math., 127 (2014), 315-364.
doi: 10.1007/s00211-013-0586-9. |
[23] |
A. Iserles and S. P. Nørsett,
On the solution of linear differential equations in Lie groups, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 983-1019.
doi: 10.1098/rsta.1999.0362. |
[24] |
A. Iserles and G. R. W. Quispel, Why Geometric Numerical Integration?, Discrete Mechanics, Geometric Integration and Lie-Butcher Series, 267, Springer, Cham, 2018, 1-28.
doi: 10.1007/978-3-030-01397-4_1. |
[25] |
K. W. Madison, F. Chevy, V. Bretin and J. Dalibard,
Stationary states of a rotating Bose-Einstein condensates: Routes to vortex nucleation, Phys. Rev. Lett., 86 (2001), 4443-4446.
doi: 10.1103/PhysRevLett.86.4443. |
[26] |
W. Magnus,
On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math., 7 (1954), 649-673.
doi: 10.1002/cpa.3160070404. |
[27] |
R. McLachlan and G. R. W. Quispel,
Splitting methods, Acta Numer., 11 (2002), 341-434.
doi: 10.1017/S0962492902000053. |
[28] |
H. Munthe-Kaas and B. Owren,
Computations in a free Lie algebra, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 957-981.
doi: 10.1098/rsta.1999.0361. |
[29] |
M. Thalhammer,
A fourth-order commutator-free exponential integrator for nonautonomous differential equations, SIAM J. Numer. Anal., 44 (2006), 851-864.
doi: 10.1137/05063042. |
[30] |
M. Thalhammer,
Convergence analysis of high-order time-splitting pseudospectral methods for nonlinear Schrödinger equations, SIAM J. Numer. Anal., 50 (2012), 3231-3258.
doi: 10.1137/120866373. |
[31] |
M. Thalhammer and J. Abhau,
A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations, J. Comput. Phys., 231 (2012), 6665-6681.
doi: 10.1016/j.jcp.2012.05.031. |
[32] |
R. Zeng and Y. Zhang,
Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates, Comput. Phys. Comm., 180 (2009), 854-860.
doi: 10.1016/j.cpc.2008.12.003. |
show all references
References:
[1] |
J. R. Abo-Shaeer, C. Raman, J. M. Vogels and W. Ketterle,
Observation of vortex lattices in Bose-Einstein condensates, Science, 292 (2001), 476-479.
doi: 10.1126/science.1060182. |
[2] |
A. Alvermann and H. Fehske,
High-order commutator-free exponential time-propagation of driven quantum systems, J. Comput. Phys., 230 (2011), 5930-5956.
doi: 10.1016/j.jcp.2011.04.006. |
[3] |
A. Alvermann, H. Fehske and P. B. Littlewood,
Numerical time propagation of quantum systems in radiation fields, New. J. Phys., 14 (2012), 22pp.
doi: 10.1088/1367-2630/14/10/105008. |
[4] |
M. H. Anderson, J. R. Ensher, M. R. Matthewa, C. E. Wieman and E. A. Cornell,
Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, 269 (1995), 198-201.
doi: 10.1126/science.269.5221.198. |
[5] |
X. Antoine, C. Besse and W. Bao,
Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations, Comput. Phys. Commun., 184 (2013), 2621-2633.
doi: 10.1016/j.cpc.2013.07.012. |
[6] |
P. Bader, Geometric integrators for Schrödinger equations, Ph.D thesis, Universitat Politécnica de Valencia, 2014.
doi: 10.4995/Thesis/10251/38716. |
[7] |
P. Bader,
Fourier-splitting methods for the dynamics of rotating Bose-Einstein condensates, J. Comput. Appl. Math., 336 (2018), 267-280.
doi: 10.1016/j.cam.2017.12.038. |
[8] |
P. Bader, S. Blanes and N. Kopylov,
Exponential propagators for the Schrödinger equation with a time-dependent potential, J. Chem. Phys., 148 (2018).
doi: 10.1063/1.5036838. |
[9] |
W. Bao, H. Li and J. Shen,
A generalized Laguerre-Fourier-Hermite pseudospectral method for computing the dynamics of rotating Bose-Einstein condensates, SIAM J. Sci. Comput., 31 (2009), 3685-3711.
doi: 10.1137/080739811. |
[10] |
W. Bao, D. Marahrens, Q. Tang and Y. Zhang,
A simple and efficient numerical method for computing the dynamics of rotating Bose-Einstein condensates via rotating Lagrangian coordinates, SIAM J. Sci. Comput., 35 (2013), A2671-A2695.
doi: 10.1137/130911111. |
[11] |
C. Besse, G. Dujardin and I. Lacroix-Violet,
High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose-Einstein condensates, SIAM J. Numer. Anal., 55 (2017), 1387-1411.
doi: 10.1137/15M1029047. |
[12] |
S. Blanes,
Time-average on the numerical integration of nonautonomous differential equations, SIAM J. Numer. Anal., 56 (2018), 2513-2536.
doi: 10.1137/17M1156150. |
[13] |
S. Blanes, F. Casas, C. González and M. Thalhammer,
Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for nonautonomous linear Schrödinger equations, IMA J. Numer. Anal., 38 (2018), 743-778.
doi: 10.1093/imanum/drx012. |
[14] |
S. Blanes, F. Casas, J. A. Oteo and J. Ros,
The Magnus expansion and some of its applications, Phys. Rep., 470 (2009), 151-238.
doi: 10.1016/j.physrep.2008.11.001. |
[15] |
S. Blanes, F. Casas and M. Thalhammer,
High-order commutator-free quasi-Magnus exponential integrators for non-autonomous linear evolution equations, Comput. Phys. Commun., 220 (2017), 243-262.
doi: 10.1016/j.cpc.2017.07.016. |
[16] |
S. Blanes, F. Casas and M. Thalhammer,
Convergence analysis of high-order commutator-free quasi-Magnus exponential integrators for nonautonomous linear evolution equations of parabolic type, IMA J. Numer. Anal., 38 (2018), 743-778.
doi: 10.1093/imanum/drx012. |
[17] |
S. Blanes, F. Diele, C. Marangi and S. Ragni,
Splitting and composition methods for explicit time dependence in separable dynamical systems, J. Comput. Appl. Math., 235 (2010), 646-659.
doi: 10.1016/j.cam.2010.06.018. |
[18] |
S. Blanes and P. C. Moan,
Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nyström methods, J. Comput. Appl. Math., 142 (2002), 313-330.
doi: 10.1016/S0377-0427(01)00492-7. |
[19] |
C. C. Bradley, C. A. Sackett, J. J. Tollett and R. G. Hulet,
Evidence of Bose-Einstein condensation in an atomic gas with attractive interaction, Phys. Rev. Lett., 75 (1995), 1687-1690.
doi: 10.1103/PhysRevLett.75.1687. |
[20] |
I. Danaila and B. Protas,
Computation of ground states of the Gross-Pitaevskii functional via Riemannian optimization, SIAM J. Sci. Comput., 39 (2017), B1102-B1129.
doi: 10.1137/17M1121974. |
[21] |
K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn and W. Ketterle,
Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., 75 (1995), 3969-3973.
doi: 10.1103/PhysRevLett.75.3969. |
[22] |
H. Hofstätter, O. Koch and M. Thalhammer,
Convergence analysis of high-order time-splitting pseudo-spectral methods for Gross-Pitaevskii equations with rotation term, Numer. Math., 127 (2014), 315-364.
doi: 10.1007/s00211-013-0586-9. |
[23] |
A. Iserles and S. P. Nørsett,
On the solution of linear differential equations in Lie groups, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 983-1019.
doi: 10.1098/rsta.1999.0362. |
[24] |
A. Iserles and G. R. W. Quispel, Why Geometric Numerical Integration?, Discrete Mechanics, Geometric Integration and Lie-Butcher Series, 267, Springer, Cham, 2018, 1-28.
doi: 10.1007/978-3-030-01397-4_1. |
[25] |
K. W. Madison, F. Chevy, V. Bretin and J. Dalibard,
Stationary states of a rotating Bose-Einstein condensates: Routes to vortex nucleation, Phys. Rev. Lett., 86 (2001), 4443-4446.
doi: 10.1103/PhysRevLett.86.4443. |
[26] |
W. Magnus,
On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math., 7 (1954), 649-673.
doi: 10.1002/cpa.3160070404. |
[27] |
R. McLachlan and G. R. W. Quispel,
Splitting methods, Acta Numer., 11 (2002), 341-434.
doi: 10.1017/S0962492902000053. |
[28] |
H. Munthe-Kaas and B. Owren,
Computations in a free Lie algebra, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 957-981.
doi: 10.1098/rsta.1999.0361. |
[29] |
M. Thalhammer,
A fourth-order commutator-free exponential integrator for nonautonomous differential equations, SIAM J. Numer. Anal., 44 (2006), 851-864.
doi: 10.1137/05063042. |
[30] |
M. Thalhammer,
Convergence analysis of high-order time-splitting pseudospectral methods for nonlinear Schrödinger equations, SIAM J. Numer. Anal., 50 (2012), 3231-3258.
doi: 10.1137/120866373. |
[31] |
M. Thalhammer and J. Abhau,
A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations, J. Comput. Phys., 231 (2012), 6665-6681.
doi: 10.1016/j.jcp.2012.05.031. |
[32] |
R. Zeng and Y. Zhang,
Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates, Comput. Phys. Comm., 180 (2009), 854-860.
doi: 10.1016/j.cpc.2008.12.003. |





[1] |
Jeremy L. Marzuola, Michael I. Weinstein. Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1505-1554. doi: 10.3934/dcds.2010.28.1505 |
[2] |
A. Alamo, J. M. Sanz-Serna. Word combinatorics for stochastic differential equations: Splitting integrators. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2163-2195. doi: 10.3934/cpaa.2019097 |
[3] |
Roy H. Goodman, Jeremy L. Marzuola, Michael I. Weinstein. Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger / Gross-Pitaevskii equation. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 225-246. doi: 10.3934/dcds.2015.35.225 |
[4] |
Michael Entov, Leonid Polterovich, Daniel Rosen. Poisson brackets, quasi-states and symplectic integrators. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1455-1468. doi: 10.3934/dcds.2010.28.1455 |
[5] |
Norman E. Dancer. On the converse problem for the Gross-Pitaevskii equations with a large parameter. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2481-2493. doi: 10.3934/dcds.2014.34.2481 |
[6] |
Mats Vermeeren. Modified equations for variational integrators applied to Lagrangians linear in velocities. Journal of Geometric Mechanics, 2019, 11 (1) : 1-22. doi: 10.3934/jgm.2019001 |
[7] |
Jorge Cortés. Energy conserving nonholonomic integrators. Conference Publications, 2003, 2003 (Special) : 189-199. doi: 10.3934/proc.2003.2003.189 |
[8] |
Dong Deng, Ruikuan Liu. Bifurcation solutions of Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3175-3193. doi: 10.3934/dcdsb.2018306 |
[9] |
Yujin Guo, Xiaoyu Zeng, Huan-Song Zhou. Blow-up solutions for two coupled Gross-Pitaevskii equations with attractive interactions. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3749-3786. doi: 10.3934/dcds.2017159 |
[10] |
Yue Zhang, Jian Zhang. Stability and instability of standing waves for Gross-Pitaevskii equations with double power nonlinearities. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022007 |
[11] |
Pedro L. García, Antonio Fernández, César Rodrigo. Variational integrators for discrete Lagrange problems. Journal of Geometric Mechanics, 2010, 2 (4) : 343-374. doi: 10.3934/jgm.2010.2.343 |
[12] |
Oscar E. Fernandez, Anthony M. Bloch, P. J. Olver. Variational Integrators for Hamiltonizable Nonholonomic Systems. Journal of Geometric Mechanics, 2012, 4 (2) : 137-163. doi: 10.3934/jgm.2012.4.137 |
[13] |
Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations and Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337 |
[14] |
Werner Bauer, François Gay-Balmaz. Variational integrators for anelastic and pseudo-incompressible flows. Journal of Geometric Mechanics, 2019, 11 (4) : 511-537. doi: 10.3934/jgm.2019025 |
[15] |
Claude Le Bris, Frédéric Legoll. Integrators for highly oscillatory Hamiltonian systems: An homogenization approach. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 347-373. doi: 10.3934/dcdsb.2010.13.347 |
[16] |
Benedict Leimkuhler, Charles Matthews, Tiffany Vlaar. Partitioned integrators for thermodynamic parameterization of neural networks. Foundations of Data Science, 2019, 1 (4) : 457-489. doi: 10.3934/fods.2019019 |
[17] |
Fasma Diele, Carmela Marangi. Positive symplectic integrators for predator-prey dynamics. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2661-2678. doi: 10.3934/dcdsb.2017185 |
[18] |
Leonardo Colombo, Fernando Jiménez, David Martín de Diego. Variational integrators for mechanical control systems with symmetries. Journal of Computational Dynamics, 2015, 2 (2) : 193-225. doi: 10.3934/jcd.2015003 |
[19] |
Shalva Amiranashvili, Raimondas Čiegis, Mindaugas Radziunas. Numerical methods for a class of generalized nonlinear Schrödinger equations. Kinetic and Related Models, 2015, 8 (2) : 215-234. doi: 10.3934/krm.2015.8.215 |
[20] |
Xiaoyu Zeng, Yimin Zhang. Asymptotic behaviors of ground states for a modified Gross-Pitaevskii equation. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5263-5273. doi: 10.3934/dcds.2019214 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]