
-
Previous Article
Solving the wave equation with multifrequency oscillations
- JCD Home
- This Issue
-
Next Article
Algebraic structure of aromatic B-series
A new class of integrable Lotka–Volterra systems
1. | Research Center for Astronomy and Applied Mathematics, Academy of Athens, Athens 11527, Greece |
2. | School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7FS, UK |
3. | School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052, Australia |
A parameter-dependent class of Hamiltonian (generalized) Lotka–Volterra systems is considered. We prove that this class contains Liouville integrable as well as superintegrable cases according to particular choices of the parameters. We determine sufficient conditions which result in integrable behavior, while we numerically explore the complementary cases, where these analytically derived conditions are not satisfied.
References:
[1] |
Á. Ballesteros, A. Blasco and F. Musso,
Integrable deformations of Lotka-Volterra systems, Phys. Lett. A, 375 (2011), 3370-3374.
doi: 10.1016/j.physleta.2011.07.055. |
[2] |
O. I. Bogoyavlenskij,
Some constructions of integrable dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987), 737-766.
doi: 10.1070/IM1988v031n01ABEH001043. |
[3] |
O. I. Bogoyavlenskij,
Integrable Lotka-Volterra systems, Regul. Chaotic Dyn., 13 (2008), 543-556.
doi: 10.1134/S1560354708060051. |
[4] |
T. Bountis and P. Vanhaecke,
Lotka-Volterra systems satisfying a strong Painlevé property, Phys. Lett. A., 380 (2016), 3977-3982.
doi: 10.1016/j.physleta.2016.09.034. |
[5] |
S. A. Charalambides, P. A. Damianou and C. A. Evripidou,
On generalized Volterra systems, J. Geom. Phys., 87 (2015), 86-105.
doi: 10.1016/j.geomphys.2014.07.007. |
[6] |
P. A. Damianou, C. A. Evripidou, P. Kassotakis and P. Vanhaecke,
Integrable reductions of the Bogoyavlenskij-Itoh Lotka-Volterra systems, J. Math. Phys., 58 (2017), 17pp.
doi: 10.1063/1.4978854. |
[7] |
C. A. Evripidou, P. Kassotakis and P. Vanhaecke,
Integrable deformations of the Bogoyavlenskij-Itoh Lotka-Volterra systems, Regul. Chaotic Dyn., 22 (2017), 721-739.
doi: 10.1134/S1560354717060090. |
[8] |
C. A. Evripidou, P. Kassotakis and P. Vanhaecke, Integrable reductions of the dressing chain, preprint, arXiv: math/1903.02876. Google Scholar |
[9] |
M. Hénon and C. Heiles,
The applicability of the third integral of motion: Some numerical experiments, Astronom. J., 69 (1964), 73-79.
doi: 10.1086/109234. |
[10] |
B. Hernández-Bermejo and V. Fairén,
Hamiltonian structure and Darboux theorem for families of generalized Lotka-Volterra systems, J. Math. Phys., 39 (1998), 6162-6174.
doi: 10.1063/1.532621. |
[11] |
Y. Itoh,
Integrals of a Lotka-Volterra system of odd number of variables, Progr. Theoret. Phys., 78 (1987), 507-510.
doi: 10.1143/PTP.78.507. |
[12] |
Y. Itoh,
A combinatorial method for the vanishing of the Poisson brackets of an integrable Lotka-Volterra system, J. Phys. A, 42 (2009), 11pp.
doi: 10.1088/1751-8113/42/2/025201. |
[13] |
P. H. van der Kamp, T. E. Kouloukas, G. R. W. Quispel, D. T. Tran and P. Vanhaecke,
Integrable and superintegrable systems associated with multi-sums of products, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 23pp.
doi: 10.1098/rspa.2014.0481. |
[14] |
T. E. Kouloukas, G. R. W. Quispel and P. Vanhaecke,
Liouville integrability and superintegrability of a generalized Lotka-Volterra system and its Kahan discretization, J. Phys. A, 49 (2016), 13pp.
doi: 10.1088/1751-8113/49/22/225201. |
[15] |
A. J. Lotka, Analytical Theory of Biological Populations, The Plenum Series on Demographic Methods and Population Analysis, Plenum Press, New York, 1998.
doi: 10.1007/978-1-4757-9176-1. |
[16] |
O. Ragnisco and M. Scalia, The Volterra Integrable case, preprint, arXiv: math/1903.03595. Google Scholar |
[17] |
Y. B. Suris and O. Ragnisco,
What is the relativistic Volterra lattice?, Comm. Math. Phys., 200 (1999), 445-485.
doi: 10.1007/s002200050537. |
[18] |
J. A. Vano, J. C. Wildenberg, M. B. Anderson, J. K. Noel and J. C. Sprott,
Chaos in low-dimensional Lotka-Volterra models of competition, Nonlinearity, 19 (2006), 2391-2404.
doi: 10.1088/0951-7715/19/10/006. |
[19] |
A. P. Veselov and A. V. Penskoï,
On algebro-geometric Poisson brackets for the Volterra lattice, Regul. Chaotic Dyn., 3 (1998), 3-9.
doi: 10.1070/rd1998v003n02ABEH000066. |
[20] |
V. Volterra, Leçons sur la théorie mathématique de la lutte pour la vie, Les Grands Classiques Gauthier-Villars, Éditions Jacques Gabay, Sceaux, 1990. |
show all references
References:
[1] |
Á. Ballesteros, A. Blasco and F. Musso,
Integrable deformations of Lotka-Volterra systems, Phys. Lett. A, 375 (2011), 3370-3374.
doi: 10.1016/j.physleta.2011.07.055. |
[2] |
O. I. Bogoyavlenskij,
Some constructions of integrable dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987), 737-766.
doi: 10.1070/IM1988v031n01ABEH001043. |
[3] |
O. I. Bogoyavlenskij,
Integrable Lotka-Volterra systems, Regul. Chaotic Dyn., 13 (2008), 543-556.
doi: 10.1134/S1560354708060051. |
[4] |
T. Bountis and P. Vanhaecke,
Lotka-Volterra systems satisfying a strong Painlevé property, Phys. Lett. A., 380 (2016), 3977-3982.
doi: 10.1016/j.physleta.2016.09.034. |
[5] |
S. A. Charalambides, P. A. Damianou and C. A. Evripidou,
On generalized Volterra systems, J. Geom. Phys., 87 (2015), 86-105.
doi: 10.1016/j.geomphys.2014.07.007. |
[6] |
P. A. Damianou, C. A. Evripidou, P. Kassotakis and P. Vanhaecke,
Integrable reductions of the Bogoyavlenskij-Itoh Lotka-Volterra systems, J. Math. Phys., 58 (2017), 17pp.
doi: 10.1063/1.4978854. |
[7] |
C. A. Evripidou, P. Kassotakis and P. Vanhaecke,
Integrable deformations of the Bogoyavlenskij-Itoh Lotka-Volterra systems, Regul. Chaotic Dyn., 22 (2017), 721-739.
doi: 10.1134/S1560354717060090. |
[8] |
C. A. Evripidou, P. Kassotakis and P. Vanhaecke, Integrable reductions of the dressing chain, preprint, arXiv: math/1903.02876. Google Scholar |
[9] |
M. Hénon and C. Heiles,
The applicability of the third integral of motion: Some numerical experiments, Astronom. J., 69 (1964), 73-79.
doi: 10.1086/109234. |
[10] |
B. Hernández-Bermejo and V. Fairén,
Hamiltonian structure and Darboux theorem for families of generalized Lotka-Volterra systems, J. Math. Phys., 39 (1998), 6162-6174.
doi: 10.1063/1.532621. |
[11] |
Y. Itoh,
Integrals of a Lotka-Volterra system of odd number of variables, Progr. Theoret. Phys., 78 (1987), 507-510.
doi: 10.1143/PTP.78.507. |
[12] |
Y. Itoh,
A combinatorial method for the vanishing of the Poisson brackets of an integrable Lotka-Volterra system, J. Phys. A, 42 (2009), 11pp.
doi: 10.1088/1751-8113/42/2/025201. |
[13] |
P. H. van der Kamp, T. E. Kouloukas, G. R. W. Quispel, D. T. Tran and P. Vanhaecke,
Integrable and superintegrable systems associated with multi-sums of products, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 23pp.
doi: 10.1098/rspa.2014.0481. |
[14] |
T. E. Kouloukas, G. R. W. Quispel and P. Vanhaecke,
Liouville integrability and superintegrability of a generalized Lotka-Volterra system and its Kahan discretization, J. Phys. A, 49 (2016), 13pp.
doi: 10.1088/1751-8113/49/22/225201. |
[15] |
A. J. Lotka, Analytical Theory of Biological Populations, The Plenum Series on Demographic Methods and Population Analysis, Plenum Press, New York, 1998.
doi: 10.1007/978-1-4757-9176-1. |
[16] |
O. Ragnisco and M. Scalia, The Volterra Integrable case, preprint, arXiv: math/1903.03595. Google Scholar |
[17] |
Y. B. Suris and O. Ragnisco,
What is the relativistic Volterra lattice?, Comm. Math. Phys., 200 (1999), 445-485.
doi: 10.1007/s002200050537. |
[18] |
J. A. Vano, J. C. Wildenberg, M. B. Anderson, J. K. Noel and J. C. Sprott,
Chaos in low-dimensional Lotka-Volterra models of competition, Nonlinearity, 19 (2006), 2391-2404.
doi: 10.1088/0951-7715/19/10/006. |
[19] |
A. P. Veselov and A. V. Penskoï,
On algebro-geometric Poisson brackets for the Volterra lattice, Regul. Chaotic Dyn., 3 (1998), 3-9.
doi: 10.1070/rd1998v003n02ABEH000066. |
[20] |
V. Volterra, Leçons sur la théorie mathématique de la lutte pour la vie, Les Grands Classiques Gauthier-Villars, Éditions Jacques Gabay, Sceaux, 1990. |







[1] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[2] |
Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021014 |
[3] |
Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001 |
[4] |
Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177 |
[5] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[6] |
Jesús A. Álvarez López, Ramón Barral Lijó, John Hunton, Hiraku Nozawa, John R. Parker. Chaotic Delone sets. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021016 |
[7] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[8] |
Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295 |
[9] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[10] |
Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263 |
[11] |
Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 |
[12] |
Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067 |
[13] |
Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020353 |
[14] |
Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254 |
[15] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020399 |
[16] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[17] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[18] |
Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291 |
[19] |
Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030 |
[20] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]