December  2019, 6(2): 223-237. doi: 10.3934/jcd.2019011

A new class of integrable Lotka–Volterra systems

1. 

Research Center for Astronomy and Applied Mathematics, Academy of Athens, Athens 11527, Greece

2. 

School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7FS, UK

3. 

School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052, Australia

* Corresponding author: Theodoros E. Kouloukas

Received  March 2019 Revised  July 2019 Published  November 2019

A parameter-dependent class of Hamiltonian (generalized) Lotka–Volterra systems is considered. We prove that this class contains Liouville integrable as well as superintegrable cases according to particular choices of the parameters. We determine sufficient conditions which result in integrable behavior, while we numerically explore the complementary cases, where these analytically derived conditions are not satisfied.

Citation: Helen Christodoulidi, Andrew N. W. Hone, Theodoros E. Kouloukas. A new class of integrable Lotka–Volterra systems. Journal of Computational Dynamics, 2019, 6 (2) : 223-237. doi: 10.3934/jcd.2019011
References:
[1]

Á. BallesterosA. Blasco and F. Musso, Integrable deformations of Lotka-Volterra systems, Phys. Lett. A, 375 (2011), 3370-3374.  doi: 10.1016/j.physleta.2011.07.055.  Google Scholar

[2]

O. I. Bogoyavlenskij, Some constructions of integrable dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987), 737-766.  doi: 10.1070/IM1988v031n01ABEH001043.  Google Scholar

[3]

O. I. Bogoyavlenskij, Integrable Lotka-Volterra systems, Regul. Chaotic Dyn., 13 (2008), 543-556.  doi: 10.1134/S1560354708060051.  Google Scholar

[4]

T. Bountis and P. Vanhaecke, Lotka-Volterra systems satisfying a strong Painlevé property, Phys. Lett. A., 380 (2016), 3977-3982.  doi: 10.1016/j.physleta.2016.09.034.  Google Scholar

[5]

S. A. CharalambidesP. A. Damianou and C. A. Evripidou, On generalized Volterra systems, J. Geom. Phys., 87 (2015), 86-105.  doi: 10.1016/j.geomphys.2014.07.007.  Google Scholar

[6]

P. A. DamianouC. A. EvripidouP. Kassotakis and P. Vanhaecke, Integrable reductions of the Bogoyavlenskij-Itoh Lotka-Volterra systems, J. Math. Phys., 58 (2017), 17pp.  doi: 10.1063/1.4978854.  Google Scholar

[7]

C. A. EvripidouP. Kassotakis and P. Vanhaecke, Integrable deformations of the Bogoyavlenskij-Itoh Lotka-Volterra systems, Regul. Chaotic Dyn., 22 (2017), 721-739.  doi: 10.1134/S1560354717060090.  Google Scholar

[8]

C. A. Evripidou, P. Kassotakis and P. Vanhaecke, Integrable reductions of the dressing chain, preprint, arXiv: math/1903.02876. Google Scholar

[9]

M. Hénon and C. Heiles, The applicability of the third integral of motion: Some numerical experiments, Astronom. J., 69 (1964), 73-79.  doi: 10.1086/109234.  Google Scholar

[10]

B. Hernández-Bermejo and V. Fairén, Hamiltonian structure and Darboux theorem for families of generalized Lotka-Volterra systems, J. Math. Phys., 39 (1998), 6162-6174.  doi: 10.1063/1.532621.  Google Scholar

[11]

Y. Itoh, Integrals of a Lotka-Volterra system of odd number of variables, Progr. Theoret. Phys., 78 (1987), 507-510.  doi: 10.1143/PTP.78.507.  Google Scholar

[12]

Y. Itoh, A combinatorial method for the vanishing of the Poisson brackets of an integrable Lotka-Volterra system, J. Phys. A, 42 (2009), 11pp.  doi: 10.1088/1751-8113/42/2/025201.  Google Scholar

[13]

P. H. van der KampT. E. KouloukasG. R. W. QuispelD. T. Tran and P. Vanhaecke, Integrable and superintegrable systems associated with multi-sums of products, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 23pp.  doi: 10.1098/rspa.2014.0481.  Google Scholar

[14]

T. E. KouloukasG. R. W. Quispel and P. Vanhaecke, Liouville integrability and superintegrability of a generalized Lotka-Volterra system and its Kahan discretization, J. Phys. A, 49 (2016), 13pp.  doi: 10.1088/1751-8113/49/22/225201.  Google Scholar

[15]

A. J. Lotka, Analytical Theory of Biological Populations, The Plenum Series on Demographic Methods and Population Analysis, Plenum Press, New York, 1998. doi: 10.1007/978-1-4757-9176-1.  Google Scholar

[16]

O. Ragnisco and M. Scalia, The Volterra Integrable case, preprint, arXiv: math/1903.03595. Google Scholar

[17]

Y. B. Suris and O. Ragnisco, What is the relativistic Volterra lattice?, Comm. Math. Phys., 200 (1999), 445-485.  doi: 10.1007/s002200050537.  Google Scholar

[18]

J. A. VanoJ. C. WildenbergM. B. AndersonJ. K. Noel and J. C. Sprott, Chaos in low-dimensional Lotka-Volterra models of competition, Nonlinearity, 19 (2006), 2391-2404.  doi: 10.1088/0951-7715/19/10/006.  Google Scholar

[19]

A. P. Veselov and A. V. Penskoï, On algebro-geometric Poisson brackets for the Volterra lattice, Regul. Chaotic Dyn., 3 (1998), 3-9.  doi: 10.1070/rd1998v003n02ABEH000066.  Google Scholar

[20]

V. Volterra, Leçons sur la théorie mathématique de la lutte pour la vie, Les Grands Classiques Gauthier-Villars, Éditions Jacques Gabay, Sceaux, 1990.  Google Scholar

show all references

References:
[1]

Á. BallesterosA. Blasco and F. Musso, Integrable deformations of Lotka-Volterra systems, Phys. Lett. A, 375 (2011), 3370-3374.  doi: 10.1016/j.physleta.2011.07.055.  Google Scholar

[2]

O. I. Bogoyavlenskij, Some constructions of integrable dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987), 737-766.  doi: 10.1070/IM1988v031n01ABEH001043.  Google Scholar

[3]

O. I. Bogoyavlenskij, Integrable Lotka-Volterra systems, Regul. Chaotic Dyn., 13 (2008), 543-556.  doi: 10.1134/S1560354708060051.  Google Scholar

[4]

T. Bountis and P. Vanhaecke, Lotka-Volterra systems satisfying a strong Painlevé property, Phys. Lett. A., 380 (2016), 3977-3982.  doi: 10.1016/j.physleta.2016.09.034.  Google Scholar

[5]

S. A. CharalambidesP. A. Damianou and C. A. Evripidou, On generalized Volterra systems, J. Geom. Phys., 87 (2015), 86-105.  doi: 10.1016/j.geomphys.2014.07.007.  Google Scholar

[6]

P. A. DamianouC. A. EvripidouP. Kassotakis and P. Vanhaecke, Integrable reductions of the Bogoyavlenskij-Itoh Lotka-Volterra systems, J. Math. Phys., 58 (2017), 17pp.  doi: 10.1063/1.4978854.  Google Scholar

[7]

C. A. EvripidouP. Kassotakis and P. Vanhaecke, Integrable deformations of the Bogoyavlenskij-Itoh Lotka-Volterra systems, Regul. Chaotic Dyn., 22 (2017), 721-739.  doi: 10.1134/S1560354717060090.  Google Scholar

[8]

C. A. Evripidou, P. Kassotakis and P. Vanhaecke, Integrable reductions of the dressing chain, preprint, arXiv: math/1903.02876. Google Scholar

[9]

M. Hénon and C. Heiles, The applicability of the third integral of motion: Some numerical experiments, Astronom. J., 69 (1964), 73-79.  doi: 10.1086/109234.  Google Scholar

[10]

B. Hernández-Bermejo and V. Fairén, Hamiltonian structure and Darboux theorem for families of generalized Lotka-Volterra systems, J. Math. Phys., 39 (1998), 6162-6174.  doi: 10.1063/1.532621.  Google Scholar

[11]

Y. Itoh, Integrals of a Lotka-Volterra system of odd number of variables, Progr. Theoret. Phys., 78 (1987), 507-510.  doi: 10.1143/PTP.78.507.  Google Scholar

[12]

Y. Itoh, A combinatorial method for the vanishing of the Poisson brackets of an integrable Lotka-Volterra system, J. Phys. A, 42 (2009), 11pp.  doi: 10.1088/1751-8113/42/2/025201.  Google Scholar

[13]

P. H. van der KampT. E. KouloukasG. R. W. QuispelD. T. Tran and P. Vanhaecke, Integrable and superintegrable systems associated with multi-sums of products, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 23pp.  doi: 10.1098/rspa.2014.0481.  Google Scholar

[14]

T. E. KouloukasG. R. W. Quispel and P. Vanhaecke, Liouville integrability and superintegrability of a generalized Lotka-Volterra system and its Kahan discretization, J. Phys. A, 49 (2016), 13pp.  doi: 10.1088/1751-8113/49/22/225201.  Google Scholar

[15]

A. J. Lotka, Analytical Theory of Biological Populations, The Plenum Series on Demographic Methods and Population Analysis, Plenum Press, New York, 1998. doi: 10.1007/978-1-4757-9176-1.  Google Scholar

[16]

O. Ragnisco and M. Scalia, The Volterra Integrable case, preprint, arXiv: math/1903.03595. Google Scholar

[17]

Y. B. Suris and O. Ragnisco, What is the relativistic Volterra lattice?, Comm. Math. Phys., 200 (1999), 445-485.  doi: 10.1007/s002200050537.  Google Scholar

[18]

J. A. VanoJ. C. WildenbergM. B. AndersonJ. K. Noel and J. C. Sprott, Chaos in low-dimensional Lotka-Volterra models of competition, Nonlinearity, 19 (2006), 2391-2404.  doi: 10.1088/0951-7715/19/10/006.  Google Scholar

[19]

A. P. Veselov and A. V. Penskoï, On algebro-geometric Poisson brackets for the Volterra lattice, Regul. Chaotic Dyn., 3 (1998), 3-9.  doi: 10.1070/rd1998v003n02ABEH000066.  Google Scholar

[20]

V. Volterra, Leçons sur la théorie mathématique de la lutte pour la vie, Les Grands Classiques Gauthier-Villars, Éditions Jacques Gabay, Sceaux, 1990.  Google Scholar

Figure 1.  The Poincaré surface of section $ x_2 = 1,x_1>1 $ for the Lotka–Volterra system with $ a_i = 1 $ and $ E = 6 $ for various $ k_i $, $ i = 1,2,3,4 $ values: (a) $ (k_1,k_2, k_3, k_4) = (-1, -2,- 1,-1) $ (b) $ (k_1,k_2, k_3, k_4) = (-1, -2,- 1,-2) $, (c) $ (k_1,k_2, k_3, k_4) = (-1,-4,-2,-3) $, (d) $ (k_1,k_2, k_3, k_4) = (-1, -4,- 2,-1) $
Figure 2.  3D projections on the $ x_2,x_3,x_4 $ plane for the system with $ (k_1,k_2, k_3, k_4) = (-1, -4,- 2,-1) $ and for initial conditions: (a) close to a fixed point of Fig. 1(d) ($ E = 6 $), (b) on an ellipse around the fixed point ($ E = 6 $), (c) randomly chosen from Fig. 1(d) ($ E = 6 $) and (d) randomly chosen at a higher total energy ($ E = 20 $) exhibiting chaotic behavior
Figure 3.  The Poincaré surface of section $ x_2 = 1, x_1>1 $ for the Lotka–Volterra system with $ a_i = 1 $ and $ k_i = -1 $, $ i = 1,2,3,4 $ for the energies: (a) $ E = 4.2 $, (b) $ E = 6 $, (c) $ E = 8 $, (d) $ E = 29 $
Figure 4.  The largest Lyapunov exponent $ \lambda $ for the Lotka–Volterra system with $ a_i = 1 $ and $ k_i = -1 $, $ i = 1,2,3,4 $ for the energies: (a) $ E = 4.2 $ and (b) $ E = 29 $
Figure 5.  The evolution in time of the phase space variables for the integrable cases: (a) $ (k_1,k_2, k_3, k_4) = (0, 0,- 1,-1) $ and (b) $ (k_1,k_2, k_3, k_4) = (-2, -2,- 2,2) $
Figure 6.  The trajectories projected on the 3D plane $ x_1,x_3,x_4 $ plane for the integrable systems: (a) $ (k_1,k_2, k_3, k_4) = (0, 0,- 1,-1) $ and (b) $ (k_1,k_2, k_3, k_4) = (-2, -2,- 2,2) $
Figure 7.  The largest Lyapunov exponent $ \lambda $ for the system with $ (k_1,k_2, k_3, k_4) = (-2, -2,- 2,2) $ at (b) $ E = 10 $ and (c) $ E = 72 $
[1]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[2]

Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021014

[3]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[4]

Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177

[5]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[6]

Jesús A. Álvarez López, Ramón Barral Lijó, John Hunton, Hiraku Nozawa, John R. Parker. Chaotic Delone sets. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021016

[7]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[8]

Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[11]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[12]

Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067

[13]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[14]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[15]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[16]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[17]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[18]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[19]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[20]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

 Impact Factor: 

Metrics

  • PDF downloads (105)
  • HTML views (324)
  • Cited by (0)

[Back to Top]