December  2019, 6(2): 239-249. doi: 10.3934/jcd.2019012

Solving the wave equation with multifrequency oscillations

1. 

School of Electronic Engineering, Dublin City University, DCU Glasnevin Campus, Dublin 9, Ireland

2. 

DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom

3. 

Institute of Mathematics, University of Gdańsk, ul. Wit Stwosz 57, 80-308, Gdańsk, Poland

4. 

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom

Received  March 2019 Revised  October 2019 Published  November 2019

We explore a new asymptotic-numerical solver for the time-dependent wave equation with an interaction term that is oscillating in time with a very high frequency. The method involves representing the solution as an asymptotic series in inverse powers of the oscillation frequency. Using the new scheme, high accuracy is achieved at a low computational cost. Salient features of the new approach are highlighted by a numerical example.

Citation: Marissa Condon, Arieh Iserles, Karolina Kropielnicka, Pranav Singh. Solving the wave equation with multifrequency oscillations. Journal of Computational Dynamics, 2019, 6 (2) : 239-249. doi: 10.3934/jcd.2019012
References:
[1]

S. Altinbasak ÜsküpluM. CondonA. Deaño and A. Iserles, Highly oscillatory diffusion-type equations, J. Comput. Math., 31 (2013), 549-572.  doi: 10.4208/jcm.1307-m3955.  Google Scholar

[2]

P. BaderS. BlanesF. CasasN. Kopylov and E. Ponsoda, Symplectic integrators for second-order linear non-autonomous equations, J. Comput. Appl. Math., 330 (2018), 909-919.  doi: 10.1016/j.cam.2017.03.028.  Google Scholar

[3]

S. Blanes and F. Casas, Splitting and composition methods in the numerical integration of differential equations, Bol. Soc. Esp. Mat. Apl. SeMA, 45 (2008), 89-145.   Google Scholar

[4]

D. Cohen and J. Schweitzer, High order numerical methods for highly oscillatory problems, ESAIM Math. Model. Numer. Anal., 49 (2015), 695-711.  doi: 10.1051/m2an/2014056.  Google Scholar

[5]

M. CondonA. Deaño and A. Iserles, On systems of differential equations with extrinsic oscillation, Discrete Contin. Dyn. Syst., 28 (2010), 1345-1367.  doi: 10.3934/dcds.2010.28.1345.  Google Scholar

[6]

J. CooperG. P. Menzala and W. Strauss, On the scattering frequencies of time-dependent potentials, Math. Methods Appl. Sci., 8 (1986), 576-584.  doi: 10.1002/mma.1670080137.  Google Scholar

[7]

S. Cuccagna, On the wave equation with a potential, Commun. Partial Differential Equations, 25 (2000), 1549-1565.  doi: 10.1080/03605300008821559.  Google Scholar

[8]

E. Faou and K. Schratz, Asymptotic preserving schemes for the Klein-Gordon equation in the non-relativistic limit regime, Numer. Math., 126 (2014), 441-469.  doi: 10.1007/s00211-013-0567-z.  Google Scholar

[9]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Springer Series in Computational Mathematics, 31, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-30666-8.  Google Scholar

[10]

A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett and A. Zanna, Lie-group methods, in Acta Numerica, Acta Numer., 9, Cambridge Univ. Press, Cambridge, 2000, 215–365. doi: 10.1017/S0962492900002154.  Google Scholar

[11]

G. Majda and M. Wei, Relationships between a potential and its scattering frequencies, SIAM J. Appl. Math., 55 (1995), 1094-1116.  doi: 10.1137/S0036139992231186.  Google Scholar

[12]

G. F. Roach, Wave scattering by time dependent perturbations, Fract. Calc. Appl. Anal., 4 (2001), 209-236.   Google Scholar

[13]

J. M. Sanz-Serna, Modulated Fourier expansions and heterogeneous multiscale methods, IMA J. Numer. Anal., 29 (2009), 595-605.  doi: 10.1093/imanum/drn031.  Google Scholar

[14]

J. M. Sanz-Serna and A. Portillo, Classical numerical integrators for wave-packet dynamics, J. Chem. Phys., 104 (1996), 2349-2355.  doi: 10.1063/1.470930.  Google Scholar

[15]

G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5 (1968), 506-517.  doi: 10.1137/0705041.  Google Scholar

show all references

References:
[1]

S. Altinbasak ÜsküpluM. CondonA. Deaño and A. Iserles, Highly oscillatory diffusion-type equations, J. Comput. Math., 31 (2013), 549-572.  doi: 10.4208/jcm.1307-m3955.  Google Scholar

[2]

P. BaderS. BlanesF. CasasN. Kopylov and E. Ponsoda, Symplectic integrators for second-order linear non-autonomous equations, J. Comput. Appl. Math., 330 (2018), 909-919.  doi: 10.1016/j.cam.2017.03.028.  Google Scholar

[3]

S. Blanes and F. Casas, Splitting and composition methods in the numerical integration of differential equations, Bol. Soc. Esp. Mat. Apl. SeMA, 45 (2008), 89-145.   Google Scholar

[4]

D. Cohen and J. Schweitzer, High order numerical methods for highly oscillatory problems, ESAIM Math. Model. Numer. Anal., 49 (2015), 695-711.  doi: 10.1051/m2an/2014056.  Google Scholar

[5]

M. CondonA. Deaño and A. Iserles, On systems of differential equations with extrinsic oscillation, Discrete Contin. Dyn. Syst., 28 (2010), 1345-1367.  doi: 10.3934/dcds.2010.28.1345.  Google Scholar

[6]

J. CooperG. P. Menzala and W. Strauss, On the scattering frequencies of time-dependent potentials, Math. Methods Appl. Sci., 8 (1986), 576-584.  doi: 10.1002/mma.1670080137.  Google Scholar

[7]

S. Cuccagna, On the wave equation with a potential, Commun. Partial Differential Equations, 25 (2000), 1549-1565.  doi: 10.1080/03605300008821559.  Google Scholar

[8]

E. Faou and K. Schratz, Asymptotic preserving schemes for the Klein-Gordon equation in the non-relativistic limit regime, Numer. Math., 126 (2014), 441-469.  doi: 10.1007/s00211-013-0567-z.  Google Scholar

[9]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Springer Series in Computational Mathematics, 31, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-30666-8.  Google Scholar

[10]

A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett and A. Zanna, Lie-group methods, in Acta Numerica, Acta Numer., 9, Cambridge Univ. Press, Cambridge, 2000, 215–365. doi: 10.1017/S0962492900002154.  Google Scholar

[11]

G. Majda and M. Wei, Relationships between a potential and its scattering frequencies, SIAM J. Appl. Math., 55 (1995), 1094-1116.  doi: 10.1137/S0036139992231186.  Google Scholar

[12]

G. F. Roach, Wave scattering by time dependent perturbations, Fract. Calc. Appl. Anal., 4 (2001), 209-236.   Google Scholar

[13]

J. M. Sanz-Serna, Modulated Fourier expansions and heterogeneous multiscale methods, IMA J. Numer. Anal., 29 (2009), 595-605.  doi: 10.1093/imanum/drn031.  Google Scholar

[14]

J. M. Sanz-Serna and A. Portillo, Classical numerical integrators for wave-packet dynamics, J. Chem. Phys., 104 (1996), 2349-2355.  doi: 10.1063/1.470930.  Google Scholar

[15]

G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5 (1968), 506-517.  doi: 10.1137/0705041.  Google Scholar

Table 1.  [Example 1] Error and cost for the proposed asymptotic method $ \mathcal{A} $ compared to the Lanczos solver $ \mathcal{S} $. Note that each step of $ \mathcal{A} $ uses $ \mathcal{S} $ twice. $ N $ is the number of time steps ($ h = T/N $, $ T = 10 $)
$ N $ 1 2 4 8 16 64 256 1024
$ h $ 10 5 2.5 1.25 0.625 0.156 0.039 0.010
Calls $ \mathcal{S} $ 1 2 4 8 16 64 256 1024
to $ \mathcal{S} $ $ \mathcal{A} $ 2 4 8 16 32 128 512 2048
Error $ \mathcal{S} $ 4147 1.1e5 152.3 44.3 79.4 0.163 0.030 0.007
$ \omega = 25 $ $ \mathcal{A} $ 0.593 0.254 0.251 0.206 0.252 0.249 0.248 0.248
Error $ \mathcal{S} $ 4147 6.8e4 9794 960.2 41.8 0.176 0.037 0.009
$ \omega = 50 $ $ \mathcal{A} $ 0.140 0.062 0.081 0.047 0.033 0.032 0.032 0.032
Error $ \mathcal{S} $ 4147 1.6e5 7914 67.95 80.2 2.081 0.039 0.009
$ \omega = 100 $ $ \mathcal{A} $ 0.077 0.015 0.021 0.011 0.001 0.001 0.001 0.001
$ N $ 1 2 4 8 16 64 256 1024
$ h $ 10 5 2.5 1.25 0.625 0.156 0.039 0.010
Calls $ \mathcal{S} $ 1 2 4 8 16 64 256 1024
to $ \mathcal{S} $ $ \mathcal{A} $ 2 4 8 16 32 128 512 2048
Error $ \mathcal{S} $ 4147 1.1e5 152.3 44.3 79.4 0.163 0.030 0.007
$ \omega = 25 $ $ \mathcal{A} $ 0.593 0.254 0.251 0.206 0.252 0.249 0.248 0.248
Error $ \mathcal{S} $ 4147 6.8e4 9794 960.2 41.8 0.176 0.037 0.009
$ \omega = 50 $ $ \mathcal{A} $ 0.140 0.062 0.081 0.047 0.033 0.032 0.032 0.032
Error $ \mathcal{S} $ 4147 1.6e5 7914 67.95 80.2 2.081 0.039 0.009
$ \omega = 100 $ $ \mathcal{A} $ 0.077 0.015 0.021 0.011 0.001 0.001 0.001 0.001
Table 2.  [Example 2] Error and cost for the proposed asymptotic method $ \mathcal{A} $ compared to the Lanczos solver $ \mathcal{S} $. Note that each step of $ \mathcal{A} $ uses $ \mathcal{S} $ twice. $ N $ is the number of time steps ($ h = T/N $, $ T = 5 $)
$ N $ 1 2 4 8 16 32 64 128 256
$ h $ 5 2.5 1.25 0.625 0.313 0.156 0.078 0.039 0.02
Calls $ \mathcal{S} $ 1 2 4 8 16 32 64 128 256
to $ \mathcal{S} $ $ \mathcal{A} $ 2 4 8 16 32 64 128 256 512
Error $ \mathcal{S} $ 4.237 88.3 96.3 98.1 1.18 0.447 0.189 0.092 0.047
$ \omega = 25 $ $ \mathcal{A} $ 2.14 1.82 1.022 0.409 0.391 0.389 0.388 0.388 0.388
Error $ \mathcal{S} $ 2.55 88.7 82.9 8.845 13.1 0.262 0.128 0.058 0.027
$ \omega = 50 $ $ \mathcal{A} $ 0.452 0.380 0.198 0.045 0.038 0.039 0.039 0.039 0.039
Error $ \mathcal{S} $ 2.39 32.5 20.1 18.1 2.5 2.9 0.106 0.045 0.020
$ \omega = 100 $ $ \mathcal{A} $ 0.117 0.100 0.053 0.008 0.004 0.003 0.003 0.003 0.003
$ N $ 1 2 4 8 16 32 64 128 256
$ h $ 5 2.5 1.25 0.625 0.313 0.156 0.078 0.039 0.02
Calls $ \mathcal{S} $ 1 2 4 8 16 32 64 128 256
to $ \mathcal{S} $ $ \mathcal{A} $ 2 4 8 16 32 64 128 256 512
Error $ \mathcal{S} $ 4.237 88.3 96.3 98.1 1.18 0.447 0.189 0.092 0.047
$ \omega = 25 $ $ \mathcal{A} $ 2.14 1.82 1.022 0.409 0.391 0.389 0.388 0.388 0.388
Error $ \mathcal{S} $ 2.55 88.7 82.9 8.845 13.1 0.262 0.128 0.058 0.027
$ \omega = 50 $ $ \mathcal{A} $ 0.452 0.380 0.198 0.045 0.038 0.039 0.039 0.039 0.039
Error $ \mathcal{S} $ 2.39 32.5 20.1 18.1 2.5 2.9 0.106 0.045 0.020
$ \omega = 100 $ $ \mathcal{A} $ 0.117 0.100 0.053 0.008 0.004 0.003 0.003 0.003 0.003
[1]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[2]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[3]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[4]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[5]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[6]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[7]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[8]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[9]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[10]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[11]

Qian Liu, Shuang Liu, King-Yeung Lam. Asymptotic spreading of interacting species with multiple fronts Ⅰ: A geometric optics approach. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3683-3714. doi: 10.3934/dcds.2020050

[12]

Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031

[13]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[14]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[15]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[16]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[17]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[18]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[19]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[20]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

 Impact Factor: 

Metrics

  • PDF downloads (175)
  • HTML views (311)
  • Cited by (1)

[Back to Top]