December  2019, 6(2): 277-306. doi: 10.3934/jcd.2019014

Integrable reductions of the dressing chain

1. 

Department of Mathematics, Faculty of Science, University of Hradec Kralove, Czech Republic

2. 

Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus

3. 

Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR 7348 du CNRS, Bât. H3, Boulevard Marie et Pierre Curie, Site du Futuroscope, TSA 61125, 86073 POITIERS Cedex 9, France

* Corresponding author: Charalampos Evripidou

Received  March 2019 Revised  July 2019 Published  November 2019

Fund Project: The research of the first author was supported by the project "International mobilities for research activities of the University of Hradec Králové", CZ.02.2.69/0.0/0.0/16_027/0008487.

In this paper we construct a family of integrable reductions of the dressing chain, described in its Lotka-Volterra form. For each $ k, n\in \mathbb N $ with $ n \geqslant 2k+1 $ we obtain a Lotka-Volterra system $ \hbox{LV}_b(n, k) $ on $ \mathbb {R}^n $ which is a deformation of the Lotka-Volterra system $ \hbox{LV}(n, k) $, which is itself an integrable reduction of the $ 2m+1 $-dimensional Bogoyavlenskij-Itoh system $ \hbox{LV}({2m+1}, m) $, where $ m = n-k-1 $. We prove that $ \hbox{LV}_b(n, k) $ is both Liouville and non-commutative integrable, with rational first integrals which are deformations of the rational first integrals of $ \hbox{LV}({n}, {k}) $. We also construct a family of discretizations of $ \hbox{LV}_b(n, 0) $, including its Kahan discretization, and we show that these discretizations are also Liouville and superintegrable.

Citation: Charalampos Evripidou, Pavlos Kassotakis, Pol Vanhaecke. Integrable reductions of the dressing chain. Journal of Computational Dynamics, 2019, 6 (2) : 277-306. doi: 10.3934/jcd.2019014
References:
[1]

M. Adler, P. van Moerbeke and P. Vanhaecke, Algebraic Integrability, Painlevé Geometry and Lie Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, 47, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-05650-9.

[2]

V. Adler, Cutting of polygons, Funct. Anal. Appl., 27 (1993), 141-143.  doi: 10.1007/BF01085984.

[3]

O. I. Bogoyavlenskij, Some constructions of integrable dynamical systems, Math. USSR-Izv., 31 (1988), 47-75.  doi: 10.1070/IM1988v031n01ABEH001043.

[4]

O. I. Bogoyavlenskij, Integrable Lotka-Volterra systems, Regul. Chaotic Dyn., 13 (2008), 543-556.  doi: 10.1134/S1560354708060051.

[5]

E. Celledoni, R. I. McLachlan, D. I. McLaren, B. Owren and G. R. W. Quispel, Integrability properties of Kahan's method, J. Phys. A, 47 (2014), 20pp. doi: 10.1088/1751-8113/47/36/365202.

[6]

P. A. Damianou, C. A. Evripidou, P. Kassotakis and P. Vanhaecke, Integrable reductions of the Bogoyavlenskij-Itoh Lotka-Volterra systems, J. Math. Phys., 58 (2017), 17pp. doi: 10.1063/1.4978854.

[7]

C. A. EvripidouP. Kassotakis and P. Vanhaecke, Integrable deformations of the Bogoyavlenskij-Itoh Lotka-Volterra systems, Regul. Chaotic Dyn., 22 (2017), 721-739.  doi: 10.1134/S1560354717060090.

[8]

C. A. EvripidouP. H. van der Kamp and C. Zhang, Dressing the dressing chain, SIGMA Symmetry Integrability Geom. Methods Appl., 14 (2018), 59-73.  doi: 10.3842/SIGMA.2018.059.

[9]

A. Fordy and A. Hone, Discrete integrable systems and Poisson algebras from cluster maps, Comm. Math. Phys., 325 (2014), 527-584.  doi: 10.1007/s00220-013-1867-y.

[10]

R. Hirota and K. Kimura, Discretization of the Euler top, J. Phys. Soc. Japan, 69 (2000), 627-630.  doi: 10.1143/JPSJ.69.627.

[11]

R. Hirota and K. Kimura, Discretization of the Lagrange top, J. Phys. Soc. Japan, 69 (2000), 3193-3199.  doi: 10.1143/JPSJ.69.3193.

[12]

Y. Itoh, Integrals of a Lotka-Volterra system of odd number of variables, Progr. Theoret. Phys., 78 (1987), 507-510.  doi: 10.1143/PTP.78.507.

[13]

Y. Itoh, A combinatorial method for the vanishing of the Poisson brackets of an integrable Lotka-Volterra system, J. Phys. A, 42 (2009), 11pp. doi: 10.1088/1751-8113/42/2/025201.

[14]

T. E. Kouloukas, G. R. W. Quispel and P. Vanhaecke, Liouville integrability and superintegrability of a generalized Lotka-Volterra system and its Kahan discretization, J. Phys. A, 49 (2016), 13pp. doi: 10.1088/1751-8113/49/22/225201.

[15]

C. Laurent-Gengoux, A. Pichereau and P. Vanhaecke, Poisson Structures, Fundamental Principles of Mathematical Sciences, 347, Springer, Heidelberg, 2013. doi: 10.1007/978-3-642-31090-4.

[16]

A. J. Lotka, Analytical Theory of Biological Populations, The Plenum Series on Demographic Methods and Population Analysis, Plenum Press, New York, 1998. doi: 10.1007/978-1-4757-9176-1.

[17]

A. S. Miscenko and A. T. Fomenko, Generalized Liouville method for the integration of Hamiltonian systems, Funkcional. Anal. i Priložen., 12 (1978), 46–56, 96. doi: 10.1007/BF01076254.

[18]

M. Noumi and Y. Yamada, Affine Weyl groups, discrete dynamical systems and Painlevé equations, Comm. Math. Phys., 199 (1998), 281-295.  doi: 10.1007/s002200050502.

[19]

P. H. van der Kamp, T. E. Kouloukas, G. R. W. Quispel, D. T. Tran and P. Vanhaecke, Integrable and superintegrable systems associated with multi-sums of products, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 23pp. doi: 10.1098/rspa.2014.0481.

[20]

A. P. Veselov, Integrable mappings, Russian Math. Surveys, 46 (1991), 1-51.  doi: 10.1070/RM1991v046n05ABEH002856.

[21]

A. P. Veselov and A. B. Shabat, Dressing chains and the spectral theory of the Schrödinger operator, Funktsional. Anal. i Prilozhen., 27 (1993), 1–21, 96. doi: 10.1007/BF01085979.

[22]

V. Volterra, Leçons Sur la Théorie Mathématique de la Lutte Pour la Vie, Les Grands Classiques Gauthier-Villars, Éditions Jacques Gabay, Sceaux, 1990.

show all references

References:
[1]

M. Adler, P. van Moerbeke and P. Vanhaecke, Algebraic Integrability, Painlevé Geometry and Lie Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, 47, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-05650-9.

[2]

V. Adler, Cutting of polygons, Funct. Anal. Appl., 27 (1993), 141-143.  doi: 10.1007/BF01085984.

[3]

O. I. Bogoyavlenskij, Some constructions of integrable dynamical systems, Math. USSR-Izv., 31 (1988), 47-75.  doi: 10.1070/IM1988v031n01ABEH001043.

[4]

O. I. Bogoyavlenskij, Integrable Lotka-Volterra systems, Regul. Chaotic Dyn., 13 (2008), 543-556.  doi: 10.1134/S1560354708060051.

[5]

E. Celledoni, R. I. McLachlan, D. I. McLaren, B. Owren and G. R. W. Quispel, Integrability properties of Kahan's method, J. Phys. A, 47 (2014), 20pp. doi: 10.1088/1751-8113/47/36/365202.

[6]

P. A. Damianou, C. A. Evripidou, P. Kassotakis and P. Vanhaecke, Integrable reductions of the Bogoyavlenskij-Itoh Lotka-Volterra systems, J. Math. Phys., 58 (2017), 17pp. doi: 10.1063/1.4978854.

[7]

C. A. EvripidouP. Kassotakis and P. Vanhaecke, Integrable deformations of the Bogoyavlenskij-Itoh Lotka-Volterra systems, Regul. Chaotic Dyn., 22 (2017), 721-739.  doi: 10.1134/S1560354717060090.

[8]

C. A. EvripidouP. H. van der Kamp and C. Zhang, Dressing the dressing chain, SIGMA Symmetry Integrability Geom. Methods Appl., 14 (2018), 59-73.  doi: 10.3842/SIGMA.2018.059.

[9]

A. Fordy and A. Hone, Discrete integrable systems and Poisson algebras from cluster maps, Comm. Math. Phys., 325 (2014), 527-584.  doi: 10.1007/s00220-013-1867-y.

[10]

R. Hirota and K. Kimura, Discretization of the Euler top, J. Phys. Soc. Japan, 69 (2000), 627-630.  doi: 10.1143/JPSJ.69.627.

[11]

R. Hirota and K. Kimura, Discretization of the Lagrange top, J. Phys. Soc. Japan, 69 (2000), 3193-3199.  doi: 10.1143/JPSJ.69.3193.

[12]

Y. Itoh, Integrals of a Lotka-Volterra system of odd number of variables, Progr. Theoret. Phys., 78 (1987), 507-510.  doi: 10.1143/PTP.78.507.

[13]

Y. Itoh, A combinatorial method for the vanishing of the Poisson brackets of an integrable Lotka-Volterra system, J. Phys. A, 42 (2009), 11pp. doi: 10.1088/1751-8113/42/2/025201.

[14]

T. E. Kouloukas, G. R. W. Quispel and P. Vanhaecke, Liouville integrability and superintegrability of a generalized Lotka-Volterra system and its Kahan discretization, J. Phys. A, 49 (2016), 13pp. doi: 10.1088/1751-8113/49/22/225201.

[15]

C. Laurent-Gengoux, A. Pichereau and P. Vanhaecke, Poisson Structures, Fundamental Principles of Mathematical Sciences, 347, Springer, Heidelberg, 2013. doi: 10.1007/978-3-642-31090-4.

[16]

A. J. Lotka, Analytical Theory of Biological Populations, The Plenum Series on Demographic Methods and Population Analysis, Plenum Press, New York, 1998. doi: 10.1007/978-1-4757-9176-1.

[17]

A. S. Miscenko and A. T. Fomenko, Generalized Liouville method for the integration of Hamiltonian systems, Funkcional. Anal. i Priložen., 12 (1978), 46–56, 96. doi: 10.1007/BF01076254.

[18]

M. Noumi and Y. Yamada, Affine Weyl groups, discrete dynamical systems and Painlevé equations, Comm. Math. Phys., 199 (1998), 281-295.  doi: 10.1007/s002200050502.

[19]

P. H. van der Kamp, T. E. Kouloukas, G. R. W. Quispel, D. T. Tran and P. Vanhaecke, Integrable and superintegrable systems associated with multi-sums of products, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 23pp. doi: 10.1098/rspa.2014.0481.

[20]

A. P. Veselov, Integrable mappings, Russian Math. Surveys, 46 (1991), 1-51.  doi: 10.1070/RM1991v046n05ABEH002856.

[21]

A. P. Veselov and A. B. Shabat, Dressing chains and the spectral theory of the Schrödinger operator, Funktsional. Anal. i Prilozhen., 27 (1993), 1–21, 96. doi: 10.1007/BF01085979.

[22]

V. Volterra, Leçons Sur la Théorie Mathématique de la Lutte Pour la Vie, Les Grands Classiques Gauthier-Villars, Éditions Jacques Gabay, Sceaux, 1990.

[1]

Aristophanes Dimakis, Folkert Müller-Hoissen. Bidifferential graded algebras and integrable systems. Conference Publications, 2009, 2009 (Special) : 208-219. doi: 10.3934/proc.2009.2009.208

[2]

Leo T. Butler. A note on integrable mechanical systems on surfaces. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1873-1878. doi: 10.3934/dcds.2014.34.1873

[3]

W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351

[4]

Sonomi Kakizaki, Akiko Fukuda, Yusaku Yamamoto, Masashi Iwasaki, Emiko Ishiwata, Yoshimasa Nakamura. Conserved quantities of the integrable discrete hungry systems. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 889-899. doi: 10.3934/dcdss.2015.8.889

[5]

Răzvan M. Tudoran. On the control of stability of periodic orbits of completely integrable systems. Journal of Geometric Mechanics, 2015, 7 (1) : 109-124. doi: 10.3934/jgm.2015.7.109

[6]

Ernest Fontich, Pau Martín. Arnold diffusion in perturbations of analytic integrable Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 61-84. doi: 10.3934/dcds.2001.7.61

[7]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[8]

Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325

[9]

Boris S. Kruglikov and Vladimir S. Matveev. Vanishing of the entropy pseudonorm for certain integrable systems. Electronic Research Announcements, 2006, 12: 19-28.

[10]

Helen Christodoulidi, Andrew N. W. Hone, Theodoros E. Kouloukas. A new class of integrable Lotka–Volterra systems. Journal of Computational Dynamics, 2019, 6 (2) : 223-237. doi: 10.3934/jcd.2019011

[11]

Dong Chen. Positive metric entropy in nondegenerate nearly integrable systems. Journal of Modern Dynamics, 2017, 11: 43-56. doi: 10.3934/jmd.2017003

[12]

Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020

[13]

Thierry Horsin, Mohamed Ali Jendoubi. Asymptotics for some discretizations of dynamical systems, application to second order systems with non-local nonlinearities. Communications on Pure and Applied Analysis, 2022, 21 (3) : 999-1025. doi: 10.3934/cpaa.2022007

[14]

Rafael De La Llave, Victoria Sadovskaya. On the regularity of integrable conformal structures invariant under Anosov systems. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 377-385. doi: 10.3934/dcds.2005.12.377

[15]

Claude Froeschlé, Massimiliano Guzzo, Elena Lega. First numerical evidence of global Arnold diffusion in quasi-integrable systems. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 687-698. doi: 10.3934/dcdsb.2005.5.687

[16]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[17]

Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123

[18]

Francisco Crespo, Francisco Javier Molero, Sebastián Ferrer. Poisson and integrable systems through the Nambu bracket and its Jacobi multiplier. Journal of Geometric Mechanics, 2016, 8 (2) : 169-178. doi: 10.3934/jgm.2016002

[19]

Alicia Cordero, José Martínez Alfaro, Pura Vindel. Bott integrable Hamiltonian systems on $S^{2}\times S^{1}$. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 587-604. doi: 10.3934/dcds.2008.22.587

[20]

Fuzhong Cong, Jialin Hong, Hongtian Li. Quasi-effective stability for nearly integrable Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 67-80. doi: 10.3934/dcdsb.2016.21.67

 Impact Factor: 

Metrics

  • PDF downloads (175)
  • HTML views (313)
  • Cited by (0)

[Back to Top]