[1]
|
S. C. Anco, M. Mohiuddin and T. Wolf, Traveling waves and conservation laws for complex mKdV-type equations, Appl. Math. Comput., 219 (2012), 679-698.
doi: 10.1016/j.amc.2012.06.061.
|
[2]
|
U. M. Ascher and R. I. McLachlan, Multisymplectic box schemes and the Korteweg-de Vries equation, Appl. Numer. Math., 48 (2004), 255-269.
doi: 10.1016/j.apnum.2003.09.002.
|
[3]
|
U. M. Ascher and R. I. McLachlan, On symplectic and multisymplectic schemes for the KdV equation, J. Sci. Comput., 25 (2005), 83-104.
doi: 10.1007/s10915-004-4634-6.
|
[4]
|
A. Aydin and B. Karasözen, Multisymplectic box schemes for the complex modified Korteweg-de Vries equation, J. Math. Phys., 51 (2010), 24pp.
doi: 10.1063/1.3456068.
|
[5]
|
L. Barletti, L. Brugnano, G. Frasca-Caccia and F. Iavernaro, Energy-conserving methods for the nonlinear Schrödinger equation, Appl. Math. Comput., 318 (2018), 3-18.
doi: 10.1016/j.amc.2017.04.018.
|
[6]
|
T. J. Bridges, Multisymplectic structures and wave propagation, Math. Proc. Cambridge Philos. Soc., 121 (1997), 147-190.
doi: 10.1017/S0305004196001429.
|
[7]
|
T. J. Bridges, P. E. Hydon and J. K. Lawson, Multisymplectic structures and the variational bicomplex, Math. Proc. Cambridge Philos. Soc., 148 (2010), 159-178.
doi: 10.1017/S0305004109990259.
|
[8]
|
T. J. Bridges and S. Reich, Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A, 284 (2001), 184-193.
doi: 10.1016/S0375-9601(01)00294-8.
|
[9]
|
T. J. Bridges and S. Reich, Numerical methods for Hamiltonian PDEs, J. Phys. A, 39 (2006), 5287-5320.
doi: 10.1088/0305-4470/39/19/S02.
|
[10]
|
L. Brugnano and F. Iavernaro, Line Integral Methods for Conservative Problems, Monograph
and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2016.
doi: 10.1201/b19319.
|
[11]
|
B. Cano, Conserved quantities of some Hamiltonian wave equations after full discretization, Numer. Math., 103 (2006), 197-223.
doi: 10.1007/s00211-006-0680-3.
|
[12]
|
E. Celledoni, V. Grimm, R. I. McLachlan, D. I. McLaren, D. O'Neal, B. Owren and G. R. W. Quispel, Preserving energy resp. dissipation in numerical PDEs using the "average vector field" method, J. Comput. Phys., 231 (2012), 6770-6789.
doi: 10.1016/j.jcp.2012.06.022.
|
[13]
|
E. Celledoni, R. I. McLachlan, B. Owren and G. R. W. Quispel, Energy-preserving integrators and the structure of B-series, Found. Comput. Math., 10 (2010), 673-693.
doi: 10.1007/s10208-010-9073-1.
|
[14]
|
D. Cox, J. Little and D. O'Shea, Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1992.
doi: 10.1007/978-1-4757-2181-2.
|
[15]
|
M. Dahlby and B. Owren, A general framework for deriving integral preserving numerical methods for PDEs, SIAM J. Sci. Comput., 33 (2011), 2318-2340.
doi: 10.1137/100810174.
|
[16]
|
A. Durán and M. A. López-Marcos, Conservative numerical methods for solitary wave interactions, J. Phys. A, 36 (2003), 7761-7770.
doi: 10.1088/0305-4470/36/28/306.
|
[17]
|
A. Durán and J. M. Sanz-Serna, The numerical integration of relative equilibrium solutions. Geometric theory, Nonlinearity, 11 (1998), 1547-1567.
doi: 10.1088/0951-7715/11/6/008.
|
[18]
|
A. Durán and J. M. Sanz-Serna, The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation, IMA J. Numer. Anal., 20 (2000), 235-261.
doi: 10.1093/imanum/20.2.235.
|
[19]
|
G. Frasca-Caccia, Bespoke finite difference methods that preserve two local conservation laws of the modified KdV equation, AIP Conf. Proc., 2116 (2019).
doi: 10.1063/1.5114131.
|
[20]
|
G. Frasca-Caccia and P. E. Hydon, Simple bespoke preservation of two conservation laws, IMA J. Numer. Anal., in press.
doi: 10.1093/imanum/dry087.
|
[21]
|
J. de Frutos and J. M. Sanz-Serna, Accuracy and conservation properties in numerical integration: The case of the Korteweg-de Vries equation, Numer. Math., 75 (1997), 421-445.
doi: 10.1007/s002110050247.
|
[22]
|
D. Furihata, Finite difference schemes for $\partial u/\partial t = (\partial/\partial x)^\alpha\delta G/\delta u$ that inherit energy conservation or dissipation property, J. Comput. Phys., 156 (1999), 181-205.
doi: 10.1006/jcph.1999.6377.
|
[23]
|
D. Furihata and T. Matsuo, Discrete Variational Derivative Method: A Structure-Preserving
Numerical Method for Partial Differential Equations, Chapman & Hall/CRC Numerical Analysis and Scientific Computing, CRC Press, Boca Raton, FL, 2011.
|
[24]
|
O. Gonzales, Time integration and discrete Hamiltonian systems, J. Nonlinear Sci., 6 (1996), 449-467.
doi: 10.1007/BF02440162.
|
[25]
|
T. J. Grant, Bespoke finite difference schemes that preserve multiple conservation laws, LMS J. Comput. Math., 18 (2015), 372-403.
doi: 10.1112/S1461157015000078.
|
[26]
|
T. J. Grant and P. E. Hydon, Characteristics of conservation laws for difference equations, Found. Comput. Math., 13 (2013), 667-692.
doi: 10.1007/s10208-013-9151-2.
|
[27]
|
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer, Heidelberg, 2010.
doi: 10.1007/3-540-30666-8.
|
[28]
|
P. E. Hydon, Conservation laws of partial difference equations with two independent variables, J. Phys. A, 34 (2001), 10347-10355.
doi: 10.1088/0305-4470/34/48/301.
|
[29]
|
P. E. Hydon, Difference Equations by Differential Equation Methods, Cambridge Monographs
on Applied and Computational Mathematics, 27, Cambridge University Press, Cambridge,
2014.
doi: 10.1017/CBO9781139016988.
|
[30]
|
P. E. Hydon and E. L. Mansfield, A variational complex for difference equations, Found. Comput. Math., 4 (2004), 187-217.
doi: 10.1007/s10208-002-0071-9.
|
[31]
|
B. A. Kuperschmidt, Discrete Lax equations and differential-difference calculus, Astérisque, (1985), 212pp.
|
[32]
|
B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, Cambridge Monographs on
Applied and Computational Mathematics, 14, Cambridge University Press, Cambridge, 2004.
doi: 10.1017/CBO9780511614118.
|
[33]
|
J. E. Marsden, G. W. Patrick, and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs, Commun. Math. Phys., 199 (1998), 351–395.
doi: 10.1007/s002200050505.
|
[34]
|
F. McDonald, R. I. McLachlan, B. E. Moore and G. R. W. Quispel, Travelling wave solutions of multisymplectic discretizations of semi-linear wave equations, J. Difference Equ. Appl., 22 (2016), 913-940.
doi: 10.1080/10236198.2016.1162161.
|
[35]
|
R. I. McLachlan and G. R. W. Quispel, Discrete gradient methods have an energy conservation law, Discrete Contin. Dyn. Syst., 34 (2014), 1099-1104.
doi: 10.3934/dcds.2014.34.1099.
|
[36]
|
R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 1021-1045.
doi: 10.1098/rsta.1999.0363.
|
[37]
|
R. Miura, C. S. Gardner and M. D. Kruskal, Korteweg-de Vries equation and generalizations. Ⅱ. Existence of conservation laws and constant of motion, J. Mathematical Phys., 9 (1968), 1204-1209.
doi: 10.1063/1.1664701.
|
[38]
|
M. Oliver, M. West and C. Wulff, Approximate momentum conservation for spatial semidiscretization of semilinear wave equations, Numer. Math., 97 (2004), 493-535.
doi: 10.1007/s00211-003-0488-3.
|
[39]
|
P. J. Olver, Evolution equations possessing infinitely many symmetries, J. Mathematical Phys., 18 (1977), 1212-1215.
doi: 10.1063/1.523393.
|
[40]
|
G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41 (2008), 7pp.
doi: 10.1088/1751-8113/41/4/045206.
|
[41]
|
G. R. W. Quispel and G. S. Turner, Discrete gradient methods for solving ODEs numerically while preserving a first integral, J. Phys. A., 29 (1996), L341–L349.
doi: 10.1088/0305-4470/29/13/006.
|
[42]
|
D. J. Zhang, S. L. Zhao, Y. Y. Sun and J. Zhou, Solutions to the modified Korteweg-de Vries equation, Rev. Math. Phys., 26 (2014), 42pp.
doi: 10.1142/S0129055X14300064.
|