
-
Previous Article
Re-factorising a QRT map
- JCD Home
- This Issue
-
Next Article
Integrable reductions of the dressing chain
Locally conservative finite difference schemes for the modified KdV equation
School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7FS, UK |
Finite difference schemes that preserve two conservation laws of a given partial differential equation can be found directly by a recently-developed symbolic approach. Until now, this has been used only for equations with quadratic nonlinearity.
In principle, a simplified version of the direct approach also works for equations with polynomial nonlinearity of higher degree. For the modified Korteweg-de Vries equation, whose nonlinear term is cubic, this approach yields several new families of second-order accurate schemes that preserve mass and either energy or momentum. Two of these families contain Average Vector Field schemes of the type developed by Quispel and co-workers. Numerical tests show that each family includes schemes that are highly accurate compared to other mass-preserving methods that can be found in the literature.
References:
[1] |
S. C. Anco, M. Mohiuddin and T. Wolf,
Traveling waves and conservation laws for complex mKdV-type equations, Appl. Math. Comput., 219 (2012), 679-698.
doi: 10.1016/j.amc.2012.06.061. |
[2] |
U. M. Ascher and R. I. McLachlan,
Multisymplectic box schemes and the Korteweg-de Vries equation, Appl. Numer. Math., 48 (2004), 255-269.
doi: 10.1016/j.apnum.2003.09.002. |
[3] |
U. M. Ascher and R. I. McLachlan,
On symplectic and multisymplectic schemes for the KdV equation, J. Sci. Comput., 25 (2005), 83-104.
doi: 10.1007/s10915-004-4634-6. |
[4] |
A. Aydin and B. Karasözen, Multisymplectic box schemes for the complex modified Korteweg-de Vries equation, J. Math. Phys., 51 (2010), 24pp.
doi: 10.1063/1.3456068. |
[5] |
L. Barletti, L. Brugnano, G. Frasca-Caccia and F. Iavernaro,
Energy-conserving methods for the nonlinear Schrödinger equation, Appl. Math. Comput., 318 (2018), 3-18.
doi: 10.1016/j.amc.2017.04.018. |
[6] |
T. J. Bridges,
Multisymplectic structures and wave propagation, Math. Proc. Cambridge Philos. Soc., 121 (1997), 147-190.
doi: 10.1017/S0305004196001429. |
[7] |
T. J. Bridges, P. E. Hydon and J. K. Lawson,
Multisymplectic structures and the variational bicomplex, Math. Proc. Cambridge Philos. Soc., 148 (2010), 159-178.
doi: 10.1017/S0305004109990259. |
[8] |
T. J. Bridges and S. Reich,
Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A, 284 (2001), 184-193.
doi: 10.1016/S0375-9601(01)00294-8. |
[9] |
T. J. Bridges and S. Reich,
Numerical methods for Hamiltonian PDEs, J. Phys. A, 39 (2006), 5287-5320.
doi: 10.1088/0305-4470/39/19/S02. |
[10] |
L. Brugnano and F. Iavernaro, Line Integral Methods for Conservative Problems, Monograph
and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2016.
doi: 10.1201/b19319. |
[11] |
B. Cano,
Conserved quantities of some Hamiltonian wave equations after full discretization, Numer. Math., 103 (2006), 197-223.
doi: 10.1007/s00211-006-0680-3. |
[12] |
E. Celledoni, V. Grimm, R. I. McLachlan, D. I. McLaren, D. O'Neal, B. Owren and G. R. W. Quispel,
Preserving energy resp. dissipation in numerical PDEs using the "average vector field" method, J. Comput. Phys., 231 (2012), 6770-6789.
doi: 10.1016/j.jcp.2012.06.022. |
[13] |
E. Celledoni, R. I. McLachlan, B. Owren and G. R. W. Quispel,
Energy-preserving integrators and the structure of B-series, Found. Comput. Math., 10 (2010), 673-693.
doi: 10.1007/s10208-010-9073-1. |
[14] |
D. Cox, J. Little and D. O'Shea, Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1992.
doi: 10.1007/978-1-4757-2181-2. |
[15] |
M. Dahlby and B. Owren,
A general framework for deriving integral preserving numerical methods for PDEs, SIAM J. Sci. Comput., 33 (2011), 2318-2340.
doi: 10.1137/100810174. |
[16] |
A. Durán and M. A. López-Marcos,
Conservative numerical methods for solitary wave interactions, J. Phys. A, 36 (2003), 7761-7770.
doi: 10.1088/0305-4470/36/28/306. |
[17] |
A. Durán and J. M. Sanz-Serna,
The numerical integration of relative equilibrium solutions. Geometric theory, Nonlinearity, 11 (1998), 1547-1567.
doi: 10.1088/0951-7715/11/6/008. |
[18] |
A. Durán and J. M. Sanz-Serna,
The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation, IMA J. Numer. Anal., 20 (2000), 235-261.
doi: 10.1093/imanum/20.2.235. |
[19] |
G. Frasca-Caccia, Bespoke finite difference methods that preserve two local conservation laws of the modified KdV equation, AIP Conf. Proc., 2116 (2019).
doi: 10.1063/1.5114131. |
[20] |
G. Frasca-Caccia and P. E. Hydon, Simple bespoke preservation of two conservation laws, IMA J. Numer. Anal., in press.
doi: 10.1093/imanum/dry087. |
[21] |
J. de Frutos and J. M. Sanz-Serna,
Accuracy and conservation properties in numerical integration: The case of the Korteweg-de Vries equation, Numer. Math., 75 (1997), 421-445.
doi: 10.1007/s002110050247. |
[22] |
D. Furihata,
Finite difference schemes for $\partial u/\partial t = (\partial/\partial x)^\alpha\delta G/\delta u$ that inherit energy conservation or dissipation property, J. Comput. Phys., 156 (1999), 181-205.
doi: 10.1006/jcph.1999.6377. |
[23] |
D. Furihata and T. Matsuo, Discrete Variational Derivative Method: A Structure-Preserving
Numerical Method for Partial Differential Equations, Chapman & Hall/CRC Numerical Analysis and Scientific Computing, CRC Press, Boca Raton, FL, 2011. |
[24] |
O. Gonzales,
Time integration and discrete Hamiltonian systems, J. Nonlinear Sci., 6 (1996), 449-467.
doi: 10.1007/BF02440162. |
[25] |
T. J. Grant,
Bespoke finite difference schemes that preserve multiple conservation laws, LMS J. Comput. Math., 18 (2015), 372-403.
doi: 10.1112/S1461157015000078. |
[26] |
T. J. Grant and P. E. Hydon,
Characteristics of conservation laws for difference equations, Found. Comput. Math., 13 (2013), 667-692.
doi: 10.1007/s10208-013-9151-2. |
[27] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer, Heidelberg, 2010.
doi: 10.1007/3-540-30666-8. |
[28] |
P. E. Hydon,
Conservation laws of partial difference equations with two independent variables, J. Phys. A, 34 (2001), 10347-10355.
doi: 10.1088/0305-4470/34/48/301. |
[29] |
P. E. Hydon, Difference Equations by Differential Equation Methods, Cambridge Monographs
on Applied and Computational Mathematics, 27, Cambridge University Press, Cambridge,
2014.
doi: 10.1017/CBO9781139016988. |
[30] |
P. E. Hydon and E. L. Mansfield,
A variational complex for difference equations, Found. Comput. Math., 4 (2004), 187-217.
doi: 10.1007/s10208-002-0071-9. |
[31] |
B. A. Kuperschmidt, Discrete Lax equations and differential-difference calculus, Astérisque, (1985), 212pp. |
[32] |
B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, Cambridge Monographs on
Applied and Computational Mathematics, 14, Cambridge University Press, Cambridge, 2004.
doi: 10.1017/CBO9780511614118. |
[33] |
J. E. Marsden, G. W. Patrick, and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs, Commun. Math. Phys., 199 (1998), 351–395.
doi: 10.1007/s002200050505. |
[34] |
F. McDonald, R. I. McLachlan, B. E. Moore and G. R. W. Quispel,
Travelling wave solutions of multisymplectic discretizations of semi-linear wave equations, J. Difference Equ. Appl., 22 (2016), 913-940.
doi: 10.1080/10236198.2016.1162161. |
[35] |
R. I. McLachlan and G. R. W. Quispel,
Discrete gradient methods have an energy conservation law, Discrete Contin. Dyn. Syst., 34 (2014), 1099-1104.
doi: 10.3934/dcds.2014.34.1099. |
[36] |
R. I. McLachlan, G. R. W. Quispel and N. Robidoux,
Geometric integration using discrete gradients, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 1021-1045.
doi: 10.1098/rsta.1999.0363. |
[37] |
R. Miura, C. S. Gardner and M. D. Kruskal,
Korteweg-de Vries equation and generalizations. Ⅱ. Existence of conservation laws and constant of motion, J. Mathematical Phys., 9 (1968), 1204-1209.
doi: 10.1063/1.1664701. |
[38] |
M. Oliver, M. West and C. Wulff,
Approximate momentum conservation for spatial semidiscretization of semilinear wave equations, Numer. Math., 97 (2004), 493-535.
doi: 10.1007/s00211-003-0488-3. |
[39] |
P. J. Olver,
Evolution equations possessing infinitely many symmetries, J. Mathematical Phys., 18 (1977), 1212-1215.
doi: 10.1063/1.523393. |
[40] |
G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41 (2008), 7pp.
doi: 10.1088/1751-8113/41/4/045206. |
[41] |
G. R. W. Quispel and G. S. Turner, Discrete gradient methods for solving ODEs numerically while preserving a first integral, J. Phys. A., 29 (1996), L341–L349.
doi: 10.1088/0305-4470/29/13/006. |
[42] |
D. J. Zhang, S. L. Zhao, Y. Y. Sun and J. Zhou, Solutions to the modified Korteweg-de Vries equation, Rev. Math. Phys., 26 (2014), 42pp.
doi: 10.1142/S0129055X14300064. |
show all references
References:
[1] |
S. C. Anco, M. Mohiuddin and T. Wolf,
Traveling waves and conservation laws for complex mKdV-type equations, Appl. Math. Comput., 219 (2012), 679-698.
doi: 10.1016/j.amc.2012.06.061. |
[2] |
U. M. Ascher and R. I. McLachlan,
Multisymplectic box schemes and the Korteweg-de Vries equation, Appl. Numer. Math., 48 (2004), 255-269.
doi: 10.1016/j.apnum.2003.09.002. |
[3] |
U. M. Ascher and R. I. McLachlan,
On symplectic and multisymplectic schemes for the KdV equation, J. Sci. Comput., 25 (2005), 83-104.
doi: 10.1007/s10915-004-4634-6. |
[4] |
A. Aydin and B. Karasözen, Multisymplectic box schemes for the complex modified Korteweg-de Vries equation, J. Math. Phys., 51 (2010), 24pp.
doi: 10.1063/1.3456068. |
[5] |
L. Barletti, L. Brugnano, G. Frasca-Caccia and F. Iavernaro,
Energy-conserving methods for the nonlinear Schrödinger equation, Appl. Math. Comput., 318 (2018), 3-18.
doi: 10.1016/j.amc.2017.04.018. |
[6] |
T. J. Bridges,
Multisymplectic structures and wave propagation, Math. Proc. Cambridge Philos. Soc., 121 (1997), 147-190.
doi: 10.1017/S0305004196001429. |
[7] |
T. J. Bridges, P. E. Hydon and J. K. Lawson,
Multisymplectic structures and the variational bicomplex, Math. Proc. Cambridge Philos. Soc., 148 (2010), 159-178.
doi: 10.1017/S0305004109990259. |
[8] |
T. J. Bridges and S. Reich,
Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A, 284 (2001), 184-193.
doi: 10.1016/S0375-9601(01)00294-8. |
[9] |
T. J. Bridges and S. Reich,
Numerical methods for Hamiltonian PDEs, J. Phys. A, 39 (2006), 5287-5320.
doi: 10.1088/0305-4470/39/19/S02. |
[10] |
L. Brugnano and F. Iavernaro, Line Integral Methods for Conservative Problems, Monograph
and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2016.
doi: 10.1201/b19319. |
[11] |
B. Cano,
Conserved quantities of some Hamiltonian wave equations after full discretization, Numer. Math., 103 (2006), 197-223.
doi: 10.1007/s00211-006-0680-3. |
[12] |
E. Celledoni, V. Grimm, R. I. McLachlan, D. I. McLaren, D. O'Neal, B. Owren and G. R. W. Quispel,
Preserving energy resp. dissipation in numerical PDEs using the "average vector field" method, J. Comput. Phys., 231 (2012), 6770-6789.
doi: 10.1016/j.jcp.2012.06.022. |
[13] |
E. Celledoni, R. I. McLachlan, B. Owren and G. R. W. Quispel,
Energy-preserving integrators and the structure of B-series, Found. Comput. Math., 10 (2010), 673-693.
doi: 10.1007/s10208-010-9073-1. |
[14] |
D. Cox, J. Little and D. O'Shea, Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1992.
doi: 10.1007/978-1-4757-2181-2. |
[15] |
M. Dahlby and B. Owren,
A general framework for deriving integral preserving numerical methods for PDEs, SIAM J. Sci. Comput., 33 (2011), 2318-2340.
doi: 10.1137/100810174. |
[16] |
A. Durán and M. A. López-Marcos,
Conservative numerical methods for solitary wave interactions, J. Phys. A, 36 (2003), 7761-7770.
doi: 10.1088/0305-4470/36/28/306. |
[17] |
A. Durán and J. M. Sanz-Serna,
The numerical integration of relative equilibrium solutions. Geometric theory, Nonlinearity, 11 (1998), 1547-1567.
doi: 10.1088/0951-7715/11/6/008. |
[18] |
A. Durán and J. M. Sanz-Serna,
The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation, IMA J. Numer. Anal., 20 (2000), 235-261.
doi: 10.1093/imanum/20.2.235. |
[19] |
G. Frasca-Caccia, Bespoke finite difference methods that preserve two local conservation laws of the modified KdV equation, AIP Conf. Proc., 2116 (2019).
doi: 10.1063/1.5114131. |
[20] |
G. Frasca-Caccia and P. E. Hydon, Simple bespoke preservation of two conservation laws, IMA J. Numer. Anal., in press.
doi: 10.1093/imanum/dry087. |
[21] |
J. de Frutos and J. M. Sanz-Serna,
Accuracy and conservation properties in numerical integration: The case of the Korteweg-de Vries equation, Numer. Math., 75 (1997), 421-445.
doi: 10.1007/s002110050247. |
[22] |
D. Furihata,
Finite difference schemes for $\partial u/\partial t = (\partial/\partial x)^\alpha\delta G/\delta u$ that inherit energy conservation or dissipation property, J. Comput. Phys., 156 (1999), 181-205.
doi: 10.1006/jcph.1999.6377. |
[23] |
D. Furihata and T. Matsuo, Discrete Variational Derivative Method: A Structure-Preserving
Numerical Method for Partial Differential Equations, Chapman & Hall/CRC Numerical Analysis and Scientific Computing, CRC Press, Boca Raton, FL, 2011. |
[24] |
O. Gonzales,
Time integration and discrete Hamiltonian systems, J. Nonlinear Sci., 6 (1996), 449-467.
doi: 10.1007/BF02440162. |
[25] |
T. J. Grant,
Bespoke finite difference schemes that preserve multiple conservation laws, LMS J. Comput. Math., 18 (2015), 372-403.
doi: 10.1112/S1461157015000078. |
[26] |
T. J. Grant and P. E. Hydon,
Characteristics of conservation laws for difference equations, Found. Comput. Math., 13 (2013), 667-692.
doi: 10.1007/s10208-013-9151-2. |
[27] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer, Heidelberg, 2010.
doi: 10.1007/3-540-30666-8. |
[28] |
P. E. Hydon,
Conservation laws of partial difference equations with two independent variables, J. Phys. A, 34 (2001), 10347-10355.
doi: 10.1088/0305-4470/34/48/301. |
[29] |
P. E. Hydon, Difference Equations by Differential Equation Methods, Cambridge Monographs
on Applied and Computational Mathematics, 27, Cambridge University Press, Cambridge,
2014.
doi: 10.1017/CBO9781139016988. |
[30] |
P. E. Hydon and E. L. Mansfield,
A variational complex for difference equations, Found. Comput. Math., 4 (2004), 187-217.
doi: 10.1007/s10208-002-0071-9. |
[31] |
B. A. Kuperschmidt, Discrete Lax equations and differential-difference calculus, Astérisque, (1985), 212pp. |
[32] |
B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, Cambridge Monographs on
Applied and Computational Mathematics, 14, Cambridge University Press, Cambridge, 2004.
doi: 10.1017/CBO9780511614118. |
[33] |
J. E. Marsden, G. W. Patrick, and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs, Commun. Math. Phys., 199 (1998), 351–395.
doi: 10.1007/s002200050505. |
[34] |
F. McDonald, R. I. McLachlan, B. E. Moore and G. R. W. Quispel,
Travelling wave solutions of multisymplectic discretizations of semi-linear wave equations, J. Difference Equ. Appl., 22 (2016), 913-940.
doi: 10.1080/10236198.2016.1162161. |
[35] |
R. I. McLachlan and G. R. W. Quispel,
Discrete gradient methods have an energy conservation law, Discrete Contin. Dyn. Syst., 34 (2014), 1099-1104.
doi: 10.3934/dcds.2014.34.1099. |
[36] |
R. I. McLachlan, G. R. W. Quispel and N. Robidoux,
Geometric integration using discrete gradients, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 1021-1045.
doi: 10.1098/rsta.1999.0363. |
[37] |
R. Miura, C. S. Gardner and M. D. Kruskal,
Korteweg-de Vries equation and generalizations. Ⅱ. Existence of conservation laws and constant of motion, J. Mathematical Phys., 9 (1968), 1204-1209.
doi: 10.1063/1.1664701. |
[38] |
M. Oliver, M. West and C. Wulff,
Approximate momentum conservation for spatial semidiscretization of semilinear wave equations, Numer. Math., 97 (2004), 493-535.
doi: 10.1007/s00211-003-0488-3. |
[39] |
P. J. Olver,
Evolution equations possessing infinitely many symmetries, J. Mathematical Phys., 18 (1977), 1212-1215.
doi: 10.1063/1.523393. |
[40] |
G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41 (2008), 7pp.
doi: 10.1088/1751-8113/41/4/045206. |
[41] |
G. R. W. Quispel and G. S. Turner, Discrete gradient methods for solving ODEs numerically while preserving a first integral, J. Phys. A., 29 (1996), L341–L349.
doi: 10.1088/0305-4470/29/13/006. |
[42] |
D. J. Zhang, S. L. Zhao, Y. Y. Sun and J. Zhou, Solutions to the modified Korteweg-de Vries equation, Rev. Math. Phys., 26 (2014), 42pp.
doi: 10.1142/S0129055X14300064. |




Method | |
Sol. Err. | |||||
1.74e-13 | 0.0036 | 5.13e-13 | 0.3701 | -0.51 | -0.06 | -0.45 | |
1.33e-13 | 0.0732 | 8.01e-13 |
0.0085 |
0 | -0.01 | 0.01 | |
6.22e-14 |
1.81e-04 |
4.65e-13 | 0.3857 | -0.53 | -0.07 | -0.46 | |
2.13e-13 | 3.69e-13 | 0.0632 | 0.2396 | -0.32 | -0.04 | -0.28 | |
1.21e-13 | 3.32e-13 | 0.0032 |
0.0051 |
0 | 0.01 | -0.01 | |
6.93e-14 | 1.46e-13 |
5.55e-04 |
0.0139 | -0.02 | 0.01 | -0.03 | |
3.91e-14 | 0.0142 | 4.80e-14 | 0.0167 | -0.02 | 0.01 | -0.03 | |
3.73e-14 | 0.0114 | 9.41e-14 |
0.0030 |
0 | 0.01 | -0.01 | |
5.15e-14 |
1.82e-04 |
5.51e-14 | 0.0627 | 0.08 | 0.02 | 0.06 | |
4.62e-14 | 5.68e-14 | 0.0358 | 0.0756 | -0.10 | 0 | -0.10 | |
4.26e-14 | 5.33e-14 | 0.0359 |
0.0051 |
0 | 0.01 | -0.01 | |
Narrow box | 1.28e-13 | 0.0117 | 7.0014 | 0.0742 | 0.10 | 0.02 | 0.08 |
Multisymplectic | 6.04e-14 | 0.0058 | 6.8991 | 0.2279 | -0.31 | -0.04 | -0.27 |
Method | |
Sol. Err. | |||||
1.74e-13 | 0.0036 | 5.13e-13 | 0.3701 | -0.51 | -0.06 | -0.45 | |
1.33e-13 | 0.0732 | 8.01e-13 |
0.0085 |
0 | -0.01 | 0.01 | |
6.22e-14 |
1.81e-04 |
4.65e-13 | 0.3857 | -0.53 | -0.07 | -0.46 | |
2.13e-13 | 3.69e-13 | 0.0632 | 0.2396 | -0.32 | -0.04 | -0.28 | |
1.21e-13 | 3.32e-13 | 0.0032 |
0.0051 |
0 | 0.01 | -0.01 | |
6.93e-14 | 1.46e-13 |
5.55e-04 |
0.0139 | -0.02 | 0.01 | -0.03 | |
3.91e-14 | 0.0142 | 4.80e-14 | 0.0167 | -0.02 | 0.01 | -0.03 | |
3.73e-14 | 0.0114 | 9.41e-14 |
0.0030 |
0 | 0.01 | -0.01 | |
5.15e-14 |
1.82e-04 |
5.51e-14 | 0.0627 | 0.08 | 0.02 | 0.06 | |
4.62e-14 | 5.68e-14 | 0.0358 | 0.0756 | -0.10 | 0 | -0.10 | |
4.26e-14 | 5.33e-14 | 0.0359 |
0.0051 |
0 | 0.01 | -0.01 | |
Narrow box | 1.28e-13 | 0.0117 | 7.0014 | 0.0742 | 0.10 | 0.02 | 0.08 |
Multisymplectic | 6.04e-14 | 0.0058 | 6.8991 | 0.2279 | -0.31 | -0.04 | -0.27 |
Method | |
Sol. Err. | |||||
4.62e-14 | 0.0155 | 6.93e-14 | 0.9599 | -1.84 | -0.26 | -1.58 | |
3.55e-14 | 0.2754 | 1.14e-13 |
0.0358 |
0 | -0.03 | 0.03 | |
4.26e-14 |
5.19e-04 |
1.15e-13 | 0.9798 | -1.93 | -0.26 | -1.67 | |
4.44e-14 | 9.41e-14 | 0.2363 | 0.7553 | -1.21 | -0.15 | -1.06 | |
6.57e-14 | 1.42e-13 | 0.0138 |
0.0215 |
0 | 0.05 | -0.05 | |
4.09e-14 | 7.11e-14 |
0.0021 |
0.0567 | -0.06 | 0.04 | -0.10 | |
2.13e-14 | 0.0574 | 3.73e-14 | 0.0725 | -0.1 | 0.02 | -0.12 | |
2.66e-14 | 0.0438 | 4.09e-14 |
0.0116 |
0 | 0.03 | -0.03 | |
2.13e-14 |
6.74e-04 |
4.97e-14 | 0.2571 | 0.35 | 0.08 | 0.27 | |
1.95e-14 | 4.80e-14 | 0.1461 | 0.2959 | -0.40 | -0.01 | -0.39 | |
2.31e-14 | 2.49e-14 | 0.1477 |
0.0205 |
0 | 0.08 | -0.08 | |
Narrow box | 4.97e-14 | 0.0459 | 6.8421 | 0.3054 | 0.40 | 0.09 | 0.31 |
Multisymplectic | 2.66e-14 | 0.0228 | 6.4635 | 0.7278 | -1.15 | -0.17 | -0.98 |
Method | |
Sol. Err. | |||||
4.62e-14 | 0.0155 | 6.93e-14 | 0.9599 | -1.84 | -0.26 | -1.58 | |
3.55e-14 | 0.2754 | 1.14e-13 |
0.0358 |
0 | -0.03 | 0.03 | |
4.26e-14 |
5.19e-04 |
1.15e-13 | 0.9798 | -1.93 | -0.26 | -1.67 | |
4.44e-14 | 9.41e-14 | 0.2363 | 0.7553 | -1.21 | -0.15 | -1.06 | |
6.57e-14 | 1.42e-13 | 0.0138 |
0.0215 |
0 | 0.05 | -0.05 | |
4.09e-14 | 7.11e-14 |
0.0021 |
0.0567 | -0.06 | 0.04 | -0.10 | |
2.13e-14 | 0.0574 | 3.73e-14 | 0.0725 | -0.1 | 0.02 | -0.12 | |
2.66e-14 | 0.0438 | 4.09e-14 |
0.0116 |
0 | 0.03 | -0.03 | |
2.13e-14 |
6.74e-04 |
4.97e-14 | 0.2571 | 0.35 | 0.08 | 0.27 | |
1.95e-14 | 4.80e-14 | 0.1461 | 0.2959 | -0.40 | -0.01 | -0.39 | |
2.31e-14 | 2.49e-14 | 0.1477 |
0.0205 |
0 | 0.08 | -0.08 | |
Narrow box | 4.97e-14 | 0.0459 | 6.8421 | 0.3054 | 0.40 | 0.09 | 0.31 |
Multisymplectic | 2.66e-14 | 0.0228 | 6.4635 | 0.7278 | -1.15 | -0.17 | -0.98 |
Method | |
Solution error | ||
6.76e-13 | 0.1091 | 1.33e-10 | 0.9099 | |
2.97e-13 | 0.3979 | 1.55e-10 |
0.0144 |
|
9.59e-13 |
0.0079 |
1.05e-10 | 0.7442 | |
6.25e-13 | 5.31e-12 | 7.534 | 0.7666 | |
3.03e-13 | 2.74e-12 | 2.3599 |
0.0497 |
|
7.24e-13 | 7.60e-12 |
0.1728 |
0.1931 | |
3.28e-14 | 0.1765 | 1.24e-11 | 0.4042 | |
3.53e-14 | 0.0296 | 2.63e-11 |
0.0295 |
|
5.96e-14 |
0.0095 |
1.35e-11 | 0.0708 | |
1.14e-13 | 9.24e-13 | 4.3586 | 0.5040 | |
5.34e-14 | 7.03e-13 | 4.8298 |
0.0219 |
|
Narrow box | 1.00e-12 | 0.0382 | 566.37 | 0.3477 |
Multisymplectic | 2.60e-13 | 0.0184 | 539.40 | 0.7994 |
Method | |
Solution error | ||
6.76e-13 | 0.1091 | 1.33e-10 | 0.9099 | |
2.97e-13 | 0.3979 | 1.55e-10 |
0.0144 |
|
9.59e-13 |
0.0079 |
1.05e-10 | 0.7442 | |
6.25e-13 | 5.31e-12 | 7.534 | 0.7666 | |
3.03e-13 | 2.74e-12 | 2.3599 |
0.0497 |
|
7.24e-13 | 7.60e-12 |
0.1728 |
0.1931 | |
3.28e-14 | 0.1765 | 1.24e-11 | 0.4042 | |
3.53e-14 | 0.0296 | 2.63e-11 |
0.0295 |
|
5.96e-14 |
0.0095 |
1.35e-11 | 0.0708 | |
1.14e-13 | 9.24e-13 | 4.3586 | 0.5040 | |
5.34e-14 | 7.03e-13 | 4.8298 |
0.0219 |
|
Narrow box | 1.00e-12 | 0.0382 | 566.37 | 0.3477 |
Multisymplectic | 2.60e-13 | 0.0184 | 539.40 | 0.7994 |
[1] |
María Santos Bruzón, Tamara María Garrido. Symmetries and conservation laws of a KdV6 equation. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 631-641. doi: 10.3934/dcdss.2018038 |
[2] |
Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010 |
[3] |
Robert I. McLachlan, G. R. W. Quispel. Discrete gradient methods have an energy conservation law. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1099-1104. doi: 10.3934/dcds.2014.34.1099 |
[4] |
Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic and Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35 |
[5] |
María-Santos Bruzón, Elena Recio, Tamara-María Garrido, Rafael de la Rosa. Lie symmetries, conservation laws and exact solutions of a generalized quasilinear KdV equation with degenerate dispersion. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2691-2701. doi: 10.3934/dcdss.2020222 |
[6] |
Stephen Anco, Maria Rosa, Maria Luz Gandarias. Conservation laws and symmetries of time-dependent generalized KdV equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 607-615. doi: 10.3934/dcdss.2018035 |
[7] |
Avner Friedman. Conservation laws in mathematical biology. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081 |
[8] |
Mauro Garavello. A review of conservation laws on networks. Networks and Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565 |
[9] |
Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159 |
[10] |
Stephen C. Anco, Maria Luz Gandarias, Elena Recio. Conservation laws and line soliton solutions of a family of modified KP equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2655-2665. doi: 10.3934/dcdss.2020225 |
[11] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[12] |
Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044 |
[13] |
Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143 |
[14] |
Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure and Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755 |
[15] |
Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73 |
[16] |
María Rosa, María de los Santos Bruzón, María de la Luz Gandarias. Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1331-1339. doi: 10.3934/dcdss.2015.8.1331 |
[17] |
Gianluca Crippa, Laura V. Spinolo. An overview on some results concerning the transport equation and its applications to conservation laws. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1283-1293. doi: 10.3934/cpaa.2010.9.1283 |
[18] |
Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks and Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393 |
[19] |
Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673 |
[20] |
Rinaldo M. Colombo, Kenneth H. Karlsen, Frédéric Lagoutière, Andrea Marson. Special issue on contemporary topics in conservation laws. Networks and Heterogeneous Media, 2016, 11 (2) : i-ii. doi: 10.3934/nhm.2016.11.2i |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]