[1]
|
N. Bergeron and J. L. Loday, The symmetric operation in a free pre-Lie algebra is magmatic, Proc. Amer. Math. Soc., 139 (2011), 1585-1597.
doi: 10.1090/S0002-9939-2010-10813-4.
|
[2]
|
S. Blanes, F. Casas and J. Ros, Processing symplectic methods for near-integrable Hamiltonian systems, Celest. Mech. Dyn. Astr., 77 (2000), 17-35.
doi: 10.1023/A:1008311025472.
|
[3]
|
S. Blanes, F. Casas and J. Ros, High-order Runge-Kutta-Nystrom geometric methods with processing, Appl. Numer. Math., 39 (2001), 245-259.
doi: 10.1016/S0168-9274(00)00035-0.
|
[4]
|
S. Blanes and P. C. Moan, Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nyström methods, J. Comput. Appl. Math., 142 (2002), 313-330.
doi: 10.1016/S0377-0427(01)00492-7.
|
[5]
|
M. P. Calvo Cabrero, Métodos Runge-Kutta-Nyström Simplécticos, Tesis Doctoral, Universidad de Valladolid, 1992.
|
[6]
|
F. Chapoton and M. Livernet, Pre-Lie algebras and the rooted trees operad, International Math. Research Notices, 8 (2001), 395-408.
doi: 10.1155/S1073792801000198.
|
[7]
|
M. Grayson and R. Grossman, Models for nilpotent free Lie algebras, J. Algebra, 135 (1990), 177-191.
doi: 10.1016/0021-8693(90)90156-I.
|
[8]
|
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31. Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-05018-7.
|
[9]
|
S.-J. Kang and M.-H. Kim, Free Lie algebras, generalized Witt formula, and the denominator identity, J. Algebra, 183 (1996), 560-594.
doi: 10.1006/jabr.1996.0233.
|
[10]
|
M. Lazard, Groupes, Anneaux de Lie et problème de Burnside, Groups, Lie rings and cohomology theory, C.I.M.E. Summer Sch., Springer, Heidelberg, 20 (2011), 123-184.
doi: 10.1007/978-3-642-10937-9_2.
|
[11]
|
M. Markl and E. Remm, Algebras with one operation including Poisson and other Lie-admissible algebras, J. Algebra, 299 (2006), 171-189.
doi: 10.1016/j.jalgebra.2005.09.018.
|
[12]
|
R. I. McLachlan, On the numerical integration of ordinary differential equations by symmetric composition methods, SIAM J. Sci. Comput., 16 (1995), 151-168.
doi: 10.1137/0916010.
|
[13]
|
R. I. McLachlan and G. R. W. Quispel, Splitting methods, Acta Numer., 11 (2002), 341-434.
doi: 10.1017/S0962492902000053.
|
[14]
|
R. I. McLachlan and B. Ryland, The algebraic entropy of classical mechanics, J. Math. Phys., 44 (2003), 3071-3087.
doi: 10.1063/1.1576904.
|
[15]
|
H. Munthe-Kaas and B. Owren, Computations in a free Lie algebra, R. Soc. Lond. Philos. Trans. A Math. Phys. Eng. Sci., 357 (1999), 957-981.
doi: 10.1098/rsta.1999.0361.
|
[16]
|
A. Murua, Formal series and numerical integrators, Part I: Systems of ODEs and symplectic integrators, Appl. Numer. Math., 29 (1999), 221-251.
doi: 10.1016/S0168-9274(98)00064-6.
|
[17]
|
R. Otter, The number of trees, Ann. Math., 49 (1948), 583-599.
doi: 10.2307/1969046.
|
[18]
|
C. Reutenauer, Free Lie Algebras, London Mathematical Society Monographs. New Series, 7. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993.
|
[19]
|
N. J. A. Sloane, The on-line encyclopedia of integer sequences, Notices Amer. Math. Soc., 50 (2003), 912–915, https://oeis.org.
|
[20]
|
J. H. M. Wedderburn, The functional equation $g(x^2) = 2\alpha x + [g(x)]^2$, Ann. Math., 24 (1922), 121-140.
doi: 10.2307/1967710.
|
[21]
|
J. Wisdom, M. Holman and J. Touma, Symplectic correctors, Integration Algorithms and Classical Mechanics, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 10 (1996), 217-244.
|
[22]
|
H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990), 262-268.
doi: 10.1016/0375-9601(90)90092-3.
|