December  2019, 6(2): 401-408. doi: 10.3934/jcd.2019020

Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor

Institut für Mathematik, MA 7-1, Technische Universität Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany

* Corresponding author: Yuri B. Suris

Received  February 2019 Published  November 2019

Kahan discretization is applicable to any quadratic vector field and produces a birational map which approximates the shift along the phase flow. For a planar quadratic Hamiltonian vector field with a linear Poisson tensor and with a quadratic Hamilton function, this map is known to be integrable and to preserve a pencil of conics. In the paper "Three classes of quadratic vector fields for which the Kahan discretization is the root of a generalised Manin transformation" by P. van der Kamp et al. [5], it was shown that the Kahan discretization can be represented as a composition of two involutions on the pencil of conics. In the present note, which can be considered as a comment to that paper, we show that this result can be reversed. For a linear form $ \ell(x,y) $, let $ B_1,B_2 $ be any two distinct points on the line $ \ell(x,y) = -c $, and let $ B_3,B_4 $ be any two distinct points on the line $ \ell(x,y) = c $. Set $ B_0 = \tfrac{1}{2}(B_1+B_3) $ and $ B_5 = \tfrac{1}{2}(B_2+B_4) $; these points lie on the line $ \ell(x,y) = 0 $. Finally, let $ B_\infty $ be the point at infinity on this line. Let $ \mathfrak E $ be the pencil of conics with the base points $ B_1,B_2,B_3,B_4 $. Then the composition of the $ B_\infty $-switch and of the $ B_0 $-switch on the pencil $ \mathfrak E $ is the Kahan discretization of a Hamiltonian vector field $ f = \ell(x,y)\begin{pmatrix}\partial H/\partial y \\ -\partial H/\partial x \end{pmatrix} $ with a quadratic Hamilton function $ H(x,y) $. This birational map $ \Phi_f:\mathbb C P^2\dashrightarrow\mathbb C P^2 $ has three singular points $ B_0,B_2,B_4 $, while the inverse map $ \Phi_f^{-1} $ has three singular points $ B_1,B_3,B_5 $.

Citation: Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020
References:
[1]

E. Celledoni, R. I. McLachlan, B. Owren and G. R. W. Quispel, Geometric properties of Kahan's method, J. Phys. A, 46 (2013), 025201, 12 pp. doi: 10.1088/1751-8113/46/2/025201.  Google Scholar

[2]

E. Celledoni, R. I. McLachlan, D. I. McLaren, B. Owren and G. R. W. Quispel, Integrability properties of Kahan's method, J. Phys. A, 47 (2014), 365202, 20 pp. doi: 10.1088/1751-8113/47/36/365202.  Google Scholar

[3]

E. Celledoni, D. I. McLaren, B. Owren and G. R. W. Quispel, Geometric and integrability properties of Kahan's method: The preservation of certain quadratic integrals, J. Phys. A, 52 (2019), 065201, 9 pp. doi: 10.1088/1751-8121/aafb1e.  Google Scholar

[4]

P. H. van der Kamp, D. I. McLaren and G. R. W. Quispel, Generalised Manin transformations and QRT maps, preprint, arXiv: 1806.05340. Google Scholar

[5]

P. H. van der Kamp, E. Celledoni, R. I. McLachlan, D. I. McLaren, B. Owren and G. R. W. Quispel, Three classes of quadratic vector fields for which the Kahan discretization is the root of a generalised Manin transformation, J. Phys. A, 52 (2019), 045204. Google Scholar

[6]

W. Kahan, Unconventional Numerical Methods for Trajectory Calculations, Unpublished lecture notes, 1993. Google Scholar

[7]

M. PetreraA. Pfadler and Y. B. Suris, On integrability of Hirota-Kimura-type discretizations: Experimental study of the discrete Clebsch system, Exp. Math., 18 (2009), 223-247.  doi: 10.1080/10586458.2009.10128900.  Google Scholar

[8]

M. PetreraA. Pfadler and Y. B. Suris, On integrability of Hirota-Kimura type discretizations, Regular Chaotic Dyn., 16 (2011), 245-289.  doi: 10.1134/S1560354711030051.  Google Scholar

[9]

M. Petrera, J. Smirin and Y. B. Suris, Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems, Proc. Royal Soc. A, 475 (2019), 20180761, 13 pp.  Google Scholar

[10]

M. Petrera and Y. B. Suris, On the Hamiltonian structure of Hirota-Kimura discretization of the Euler top, Math. Nachr., 283 (2010), 1654-1663.  doi: 10.1002/mana.200711162.  Google Scholar

show all references

References:
[1]

E. Celledoni, R. I. McLachlan, B. Owren and G. R. W. Quispel, Geometric properties of Kahan's method, J. Phys. A, 46 (2013), 025201, 12 pp. doi: 10.1088/1751-8113/46/2/025201.  Google Scholar

[2]

E. Celledoni, R. I. McLachlan, D. I. McLaren, B. Owren and G. R. W. Quispel, Integrability properties of Kahan's method, J. Phys. A, 47 (2014), 365202, 20 pp. doi: 10.1088/1751-8113/47/36/365202.  Google Scholar

[3]

E. Celledoni, D. I. McLaren, B. Owren and G. R. W. Quispel, Geometric and integrability properties of Kahan's method: The preservation of certain quadratic integrals, J. Phys. A, 52 (2019), 065201, 9 pp. doi: 10.1088/1751-8121/aafb1e.  Google Scholar

[4]

P. H. van der Kamp, D. I. McLaren and G. R. W. Quispel, Generalised Manin transformations and QRT maps, preprint, arXiv: 1806.05340. Google Scholar

[5]

P. H. van der Kamp, E. Celledoni, R. I. McLachlan, D. I. McLaren, B. Owren and G. R. W. Quispel, Three classes of quadratic vector fields for which the Kahan discretization is the root of a generalised Manin transformation, J. Phys. A, 52 (2019), 045204. Google Scholar

[6]

W. Kahan, Unconventional Numerical Methods for Trajectory Calculations, Unpublished lecture notes, 1993. Google Scholar

[7]

M. PetreraA. Pfadler and Y. B. Suris, On integrability of Hirota-Kimura-type discretizations: Experimental study of the discrete Clebsch system, Exp. Math., 18 (2009), 223-247.  doi: 10.1080/10586458.2009.10128900.  Google Scholar

[8]

M. PetreraA. Pfadler and Y. B. Suris, On integrability of Hirota-Kimura type discretizations, Regular Chaotic Dyn., 16 (2011), 245-289.  doi: 10.1134/S1560354711030051.  Google Scholar

[9]

M. Petrera, J. Smirin and Y. B. Suris, Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems, Proc. Royal Soc. A, 475 (2019), 20180761, 13 pp.  Google Scholar

[10]

M. Petrera and Y. B. Suris, On the Hamiltonian structure of Hirota-Kimura discretization of the Euler top, Math. Nachr., 283 (2010), 1654-1663.  doi: 10.1002/mana.200711162.  Google Scholar

Figure 1.  The black curve is the conic $ C = 0 $, the red lines represent the reducible conic $ D = 0 $. The finite base points are $ B_1, \ldots, B_4 $. The points $ B_0 $, $ B_5 $ are singular points of the Kanan map $ \Phi_f $, resp. of $ \Phi_f^{-1} $, for the following data: $ \ell(x,y) = 3x-y $, $ H(x,y) = -x^2+(2/5)xy+(1/2)y^2-4x+4y $
[1]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[2]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[3]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[4]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[5]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[6]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

[7]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[8]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[9]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[10]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[11]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[12]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[13]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[14]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[15]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

[16]

Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127

[17]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[18]

François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015

[19]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020404

[20]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

 Impact Factor: 

Metrics

  • PDF downloads (92)
  • HTML views (306)
  • Cited by (1)

Other articles
by authors

[Back to Top]