
-
Previous Article
Study of adaptive symplectic methods for simulating charged particle dynamics
- JCD Home
- This Issue
-
Next Article
Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor
Chains of rigid bodies and their numerical simulation by local frame methods
1. | Nordre Krabbedalen 17, 5178 Loddefjord, Norway |
2. | Matematisk Institutt, Universitetet i Bergen, 5020 Bergen, Norway |
We consider the dynamics and numerical simulation of systems of linked rigid bodies (chains). We describe the system using the moving frame method approach of [
References:
[1] |
E. Celledoni, A. Marthinsen and B. Owren,
Commutator-free Lie group methods, Future Generations Computer Systems, 19 (2003), 341-352.
doi: 10.1016/S0167-739X(02)00161-9. |
[2] |
L. Dieci, R. D. Russell and E. S. van Vleck,
Unitary integrators and applications to continuous orthonormalization techniques, SIAM J. Num. Anal., 31 (1994), 261-281.
doi: 10.1137/0731014. |
[3] |
F. Diele, L. Lopez and R. Peluso,
The Cayley transform in the numerical solution of unitary differential systems, Adv. Comput. Math., 8 (1998), 317-334.
doi: 10.1023/A:1018908700358. |
[4] |
E. Eich-Soellner and C. Führer, Numerical Methods in Multibody Dynalics, European Consortium for Mathematics in Industry. B. G. Teubner, Stuttgart, 1998, 290 pp.
doi: 10.1007/978-3-663-09828-7. |
[5] |
R. Featherstone, Rigid Body Dynamics Algorithms, Springer, New York, 2008.
doi: 10.1007/978-0-387-74315-8. |
[6] |
J. Flatlandsmo, T. Smith, Ø. Halvorsen and T. S. T. Impelluso, Modeling stabilization of crane-induced ship motion with gyroscopic control using the moving frame method, Journal of Computational and Nonlinear Dynamics
doi: 10.1115/1.4042323. |
[7] |
H. Goldstein, Classical Mechanics, Second edition, Addison-Wesley Series in Physics, Addison-Wesley Publishing Co., Reading, Mass., 1980. |
[8] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Second edition, Springer Series in Computational Mathematics, 31. Springer-Verlag, Berlin, 2006. |
[9] |
M. O. Hestevik, K. O. Austefjord, L.-K. S. Larsen and T. Impelluso,
Modelling subsea ROV robotics using the moving frame method, International Journal of Dynamics and Control, 7 (2019), 1306-1320.
doi: 10.1007/s40435-018-0471-6. |
[10] |
T. J. Impelluso,
The moving frame method in dynamics: Reforming a curriculum and assessment, International Journal of Mechanical Engineering Education, 6 (2018), 158-191.
doi: 10.1177/0306419017730633. |
[11] |
A. Iserles, M. P. Calvo and A. Zanna,
Runge-Kutta methods for orthogonal and isospectral flows, Appl. Numer. Math., 22 (1996), 153-163.
doi: 10.1016/S0168-9274(96)00029-3. |
[12] |
A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett and A. Zanna, Lie-group methods, Acta Numerica, Cambridge Univ. Press, Cambridge, 9 (2000), 215–365.
doi: 10.1017/S0962492900002154. |
[13] |
L. O. Jay,
Preserving Poisson structure and orthogonality in numerical integration of ordinary differential equations, Comput. Math. Appl., 48 (2004), 237-255.
doi: 10.1016/j.camwa.2003.02.013. |
[14] |
M. Leok, L. Taeyoung and N. H. McClamroch, Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds. A Geometric Approach to Modeling and Analysis, Interaction of Mechanics and Mathematics, Springer, Cham, 2018.
doi: 10.1007/978-3-319-56953-6. |
[15] |
C. Lubich, U. Nowak, U. Pöhle and C. Engstler, MEXX-Numerical Software for the Integration of Constrained Mechanical Multibody Systems, Technical Report Technical Report SC 92–12, ZIB Berlin, 1992. Google Scholar |
[16] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, Second edition, Texts in Applied Mathematics, 17. Springer-Verlag, New York, 1999.
doi: 10.1007/978-0-387-21792-5. |
[17] |
A. Müller,
Screw and Lie group theory in multibody kinematics, Multibody Syst. Dyn., 43 (2018), 37-70.
doi: 10.1007/s11044-017-9582-7. |
[18] |
H. Murakami and T. J. Impelluso, Moving Frame Method in Dynamics-A Geometrical Approach, Pearson Publishing, 2019. Google Scholar |
[19] |
A. A. Shabana, R. A. Wehage and Y. L. Hwang,
Projection methods in flexible multibody dynamics. Part Ⅱ: Dynamics and recursive projection methods, International Journal for Numerical Methods in Engineering, 35 (1992), 1941-1966.
doi: 10.1002/nme.1620351003. |
[20] |
T. Rykkje, Lie Groups and the Principle of Virtual Work Applied to Systems of Linked Rigid Bodies, Master thesis, Universitetet i Bergen, 2018. Google Scholar |
[21] |
J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems, Applied Mathematics and Mathematical Computation, 7. Chapman & Hall, London, 1994. |
[22] |
R. von Schwering, MultiBody Systems Simulation. Numerical Methods, Algorithms, and Software, Lecture Notes in Computational Science and Engineering, 7. Springer-Verlag, Berlin, 1999.
doi: 10.1007/978-3-642-58515-9. |
show all references
References:
[1] |
E. Celledoni, A. Marthinsen and B. Owren,
Commutator-free Lie group methods, Future Generations Computer Systems, 19 (2003), 341-352.
doi: 10.1016/S0167-739X(02)00161-9. |
[2] |
L. Dieci, R. D. Russell and E. S. van Vleck,
Unitary integrators and applications to continuous orthonormalization techniques, SIAM J. Num. Anal., 31 (1994), 261-281.
doi: 10.1137/0731014. |
[3] |
F. Diele, L. Lopez and R. Peluso,
The Cayley transform in the numerical solution of unitary differential systems, Adv. Comput. Math., 8 (1998), 317-334.
doi: 10.1023/A:1018908700358. |
[4] |
E. Eich-Soellner and C. Führer, Numerical Methods in Multibody Dynalics, European Consortium for Mathematics in Industry. B. G. Teubner, Stuttgart, 1998, 290 pp.
doi: 10.1007/978-3-663-09828-7. |
[5] |
R. Featherstone, Rigid Body Dynamics Algorithms, Springer, New York, 2008.
doi: 10.1007/978-0-387-74315-8. |
[6] |
J. Flatlandsmo, T. Smith, Ø. Halvorsen and T. S. T. Impelluso, Modeling stabilization of crane-induced ship motion with gyroscopic control using the moving frame method, Journal of Computational and Nonlinear Dynamics
doi: 10.1115/1.4042323. |
[7] |
H. Goldstein, Classical Mechanics, Second edition, Addison-Wesley Series in Physics, Addison-Wesley Publishing Co., Reading, Mass., 1980. |
[8] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Second edition, Springer Series in Computational Mathematics, 31. Springer-Verlag, Berlin, 2006. |
[9] |
M. O. Hestevik, K. O. Austefjord, L.-K. S. Larsen and T. Impelluso,
Modelling subsea ROV robotics using the moving frame method, International Journal of Dynamics and Control, 7 (2019), 1306-1320.
doi: 10.1007/s40435-018-0471-6. |
[10] |
T. J. Impelluso,
The moving frame method in dynamics: Reforming a curriculum and assessment, International Journal of Mechanical Engineering Education, 6 (2018), 158-191.
doi: 10.1177/0306419017730633. |
[11] |
A. Iserles, M. P. Calvo and A. Zanna,
Runge-Kutta methods for orthogonal and isospectral flows, Appl. Numer. Math., 22 (1996), 153-163.
doi: 10.1016/S0168-9274(96)00029-3. |
[12] |
A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett and A. Zanna, Lie-group methods, Acta Numerica, Cambridge Univ. Press, Cambridge, 9 (2000), 215–365.
doi: 10.1017/S0962492900002154. |
[13] |
L. O. Jay,
Preserving Poisson structure and orthogonality in numerical integration of ordinary differential equations, Comput. Math. Appl., 48 (2004), 237-255.
doi: 10.1016/j.camwa.2003.02.013. |
[14] |
M. Leok, L. Taeyoung and N. H. McClamroch, Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds. A Geometric Approach to Modeling and Analysis, Interaction of Mechanics and Mathematics, Springer, Cham, 2018.
doi: 10.1007/978-3-319-56953-6. |
[15] |
C. Lubich, U. Nowak, U. Pöhle and C. Engstler, MEXX-Numerical Software for the Integration of Constrained Mechanical Multibody Systems, Technical Report Technical Report SC 92–12, ZIB Berlin, 1992. Google Scholar |
[16] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, Second edition, Texts in Applied Mathematics, 17. Springer-Verlag, New York, 1999.
doi: 10.1007/978-0-387-21792-5. |
[17] |
A. Müller,
Screw and Lie group theory in multibody kinematics, Multibody Syst. Dyn., 43 (2018), 37-70.
doi: 10.1007/s11044-017-9582-7. |
[18] |
H. Murakami and T. J. Impelluso, Moving Frame Method in Dynamics-A Geometrical Approach, Pearson Publishing, 2019. Google Scholar |
[19] |
A. A. Shabana, R. A. Wehage and Y. L. Hwang,
Projection methods in flexible multibody dynamics. Part Ⅱ: Dynamics and recursive projection methods, International Journal for Numerical Methods in Engineering, 35 (1992), 1941-1966.
doi: 10.1002/nme.1620351003. |
[20] |
T. Rykkje, Lie Groups and the Principle of Virtual Work Applied to Systems of Linked Rigid Bodies, Master thesis, Universitetet i Bergen, 2018. Google Scholar |
[21] |
J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems, Applied Mathematics and Mathematical Computation, 7. Chapman & Hall, London, 1994. |
[22] |
R. von Schwering, MultiBody Systems Simulation. Numerical Methods, Algorithms, and Software, Lecture Notes in Computational Science and Engineering, 7. Springer-Verlag, Berlin, 1999.
doi: 10.1007/978-3-642-58515-9. |









Link 1 | Link 2 | Link 3 | Link 4 | Relative energy error | Function evaluations | |
RK45 | 5.55e-15 | 2.47e-14 | 2.24e-14 | 2.50e-14 | 7.22e-14 | 15794 |
GL2 | 2.22e-15 | 5.55e-16 | 3.00e-15 | 1.66e-15 | 3.00e-13 | 11334 |
Link 1 | Link 2 | Link 3 | Link 4 | Relative energy error | Function evaluations | |
RK45 | 5.55e-15 | 2.47e-14 | 2.24e-14 | 2.50e-14 | 7.22e-14 | 15794 |
GL2 | 2.22e-15 | 5.55e-16 | 3.00e-15 | 1.66e-15 | 3.00e-13 | 11334 |
4 | 8 | 16 | 32 | 48 | 64 | |
Time | 719ms |
2.27s |
10.7s |
45.6 |
1m43s |
3m24s |
4 | 8 | 16 | 32 | 48 | 64 | |
Time | 719ms |
2.27s |
10.7s |
45.6 |
1m43s |
3m24s |
[1] |
Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002 |
[2] |
Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128 |
[3] |
Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306 |
[4] |
Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307 |
[5] |
Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2020124 |
[6] |
Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065 |
[7] |
Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146 |
[8] |
Shin-Ichiro Ei, Masayasu Mimura, Tomoyuki Miyaji. Reflection of a self-propelling rigid disk from a boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 803-817. doi: 10.3934/dcdss.2020229 |
[9] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[10] |
Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020118 |
[11] |
Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386 |
[12] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[13] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020407 |
[14] |
Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2021001 |
[15] |
Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123 |
[16] |
Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020117 |
[17] |
Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322 |
[18] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[19] |
Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074 |
[20] |
Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020172 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]