We conjecture recurrence relations satisfied by the degrees of some linearizable lattice equations. This helps to prove linear degree growth of these equations. We then use these recurrences to search for lattice equations that have linear growth and hence are linearizable.
Citation: |
[1] |
V. E. Adler, A. I. Bobenko and Y. B. Suris, Classification of integrable equations on quad-graphs. The consistency approach, Communications in Mathematical Physics, 233 (2003), 513-543.
doi: 10.1007/s00220-002-0762-8.![]() ![]() ![]() |
[2] |
V. É. Adler and S. Y. Startsev, Discrete analogues of the Liouville equation, Theoretical and Mathematical Physics, 121 (1999), 1484-1495.
doi: 10.1007/BF02557219.![]() ![]() ![]() |
[3] |
M. P. Belon, Algebraic entropy of birational maps with invariant curves, Lett. Math. Phys., 50 (1999), 79-90.
doi: 10.1023/A:1007634406786.![]() ![]() ![]() |
[4] |
J. Blanc and J. Déserti, Degree growth of birational maps of the plane, Ann. Sc. Norm. Super. Pisa Cl. Sci., 14 (2015), 507-533.
![]() ![]() |
[5] |
P. Galashin and P. Pylyavskyy, Quivers with additive labelings: Classification and algebraic entropy, preprint, arXiv: 1704.05024v2.
![]() |
[6] |
R. N. Garifullin and R. I. Yamilov, Generalized symmetry classification of discrete equations of a class depending on twelve parameters, J. Phys. A: Math. Theor., 45 (2012), 345205, 23 pp.
doi: 10.1088/1751-8113/45/34/345205.![]() ![]() ![]() |
[7] |
B. Grammaticos, R. G. Halburd, A. Ramani and C.-M. Viallet, How to detect the integrability of discrete systems, J. Phys. A: Math. Theor., 42 (2009), 454002, 30 pp.
doi: 10.1088/1751-8113/42/45/454002.![]() ![]() ![]() |
[8] |
B. Grammaticos and A. Ramani, Singularity confinement property for the (non-autonomous) Adler-Bobenko-Suris integrable lattice equations, Lett. Math. Phys., 92 (2010), 33-45.
doi: 10.1007/s11005-010-0378-4.![]() ![]() ![]() |
[9] |
B. Grammaticos, A. Ramani and C.-M. Viallet, Solvable chaos, Physics Letters A, 336 (2005), 152-158.
doi: 10.1016/j.physleta.2005.01.026.![]() ![]() ![]() |
[10] |
G. Gubbiotti, C. Scimiterna and D. Levi, Algebraic entropy, symmetries and linearization of quad equations consistent on the cube, J. Non. Math. Phys., 23 (2016), 507-543.
doi: 10.1080/14029251.2016.1237200.![]() ![]() ![]() |
[11] |
J. Hietarinta, A new two-dimensional lattice model that is 'consistent around a cube', J. Phys. A: Math. Gen., 37 (2004), L67–L73.
doi: 10.1088/0305-4470/37/6/L01.![]() ![]() ![]() |
[12] |
J. Hietarinta and C. Viallet, Searching for integrable lattice maps using factorisation, J. Phys. A: Math. Theor., 40 (2007), 12629-12643.
doi: 10.1088/1751-8113/40/42/S09.![]() ![]() ![]() |
[13] |
P. E. Hydon and C.-M. Viallet, Asymmetric integrable quad-graph equations, Applicable Analysis, 89 (2010), 493-506.
doi: 10.1080/00036810903329951.![]() ![]() ![]() |
[14] |
P. H. van der Kamp, Growth of degrees of integrable mapping, J. Difference Equ. Appl., 18 (2012), 447-460.
doi: 10.1080/10236198.2010.510137.![]() ![]() ![]() |
[15] |
M. Kanki, T. Mase and T. Tokihiro, Algebraic entropy of an extended Hietarinta-Viallet equation, J. Phys. A: Math. Theor., 48 (2015), 355202, 19 pp.
doi: 10.1088/1751-8113/48/35/355202.![]() ![]() ![]() |
[16] |
D. Levi and C. Scimiterna, Linearizability of nonlinear equations on a quad-graph by a Point, two points and generalized Hopf-Cole transformations, SIGMA Symmetry Integrability Geom. Methods Appl., 7 (2011), Paper 079, 24 pp.
doi: 10.3842/SIGMA.2011.079.![]() ![]() ![]() |
[17] |
D. Levi and C. Scimiterna, Linearization through symmetries for discrete equations, J. Phys. A: Math. Theor., 46 (2013), 325204, 18 pp.
doi: 10.1088/1751-8113/46/32/325204.![]() ![]() ![]() |
[18] |
D. Levi and C. Scimiterna, Four points linearizable lattice schemes, JGSP, 31 (2013), 93-104.
![]() ![]() |
[19] |
C. U. Maheswari and R. Sahadevan, On the conservation laws for nonlinear partial difference equations, J. Phys. A: Math. Theor., 44 (2011), 275203, 16 pp.
doi: 10.1088/1751-8113/44/27/275201.![]() ![]() ![]() |
[20] |
T. Mase, Investigation into the role of the Laurent property in integrability, Journal of Mathematical Physics, 57 (2016), 022703, 21 pp.
doi: 10.1063/1.4941370.![]() ![]() ![]() |
[21] |
G. R. W. Quispel, H. W. Capel, V. G. Papageorgiou and F. W. Nijhoff, Integrable mappings derived from soliton equations, Physica A, 173 (1991), 243-266.
doi: 10.1016/0378-4371(91)90258-E.![]() ![]() ![]() |
[22] |
A. Ramani, N. Joshi, B. Grammaticos and T. Tamizhmani, Deconstructing an integrable lattice equation, J. Phys. A: Math. Gen., 39 (2006), L145–L149.
doi: 10.1088/0305-4470/39/8/L01.![]() ![]() ![]() |
[23] |
J. A. G. Roberts and D. T. Tran, Algebraic entropy of (integrable) lattice equations and their reductions, Nonlinearity, 32 (2019), 622-653.
doi: 10.1088/1361-6544/aaecda.![]() ![]() ![]() |
[24] |
C. Scimiterna and D. Levi, Classification of discrete equations linearizable by point transformation on a square lattice, Front. Math. China, 8 (2013), 1067-1076.
doi: 10.1007/s11464-013-0280-3.![]() ![]() ![]() |
[25] |
T. Takenawa, M. Eguchi, B. Gramaticos, Y. Ohta, A. Ramani and J. Satsuma, The space of initial conditions for linearizable mappings, Nonlinearity, 16 (2003), 457-477.
doi: 10.1088/0951-7715/16/2/306.![]() ![]() ![]() |
[26] |
S. Tremblay, B. Grammaticos and A. Ramani, Integrable lattice equations and their growth properties, Phys. Lett. A, 278 (2001), 319-324.
doi: 10.1016/S0375-9601(00)00806-9.![]() ![]() ![]() |
[27] |
C. Viallet, Algebraic entropy for lattice equations, preprint, arXiv: 0609043v2.
![]() |
[28] |
C. M. Viallet, Integrable lattice maps: $Q_V$, a rational version of $Q_4$, Glasg. Math. J., 51 (2009), 157-163.
doi: 10.1017/S0017089508004874.![]() ![]() ![]() |
[29] |
C.-M. Viallet, On the algebraic structure of rational discrete dynamical systems, J. Phys. A: Math. Theor., 48 (2015), 16FT01, 21 pp.
doi: 10.1088/1751-8113/48/16/16FT01.![]() ![]() ![]() |
Illustration of the degree recurrence relation (10)
Equations equivalent to equation (10)
Initial values