• Previous Article
    Numerical investigation of a neural field model including dendritic processing
  • JCD Home
  • This Issue
  • Next Article
    An incremental approach to online dynamic mode decomposition for time-varying systems with applications to EEG data modeling
December  2020, 7(2): 243-269. doi: 10.3934/jcd.2020010

Continuous approximation of $ M_t/M_t/ 1 $ distributions with application to production

1. 

Arizona State University, School of Mathematical and Statistical Sciences, Tempe, AZ 85257-1804, USA

2. 

University of Mannheim, Department of Mathematics, 68131 Mannheim, Germany

Received  October 2019 Published  July 2020

A single queueing system with time-dependent exponentially distributed arrival processes and exponential machine processes (Kendall notation $ M_t/M_t/1 $) is analyzed. Modeling the time evolution for the discrete queue-length distribution by a continuous drift-diffusion process a Smoluchowski equation on the half space is derived approximating the forward Kolmogorov equations. The approximate model is analyzed and validated, showing excellent agreement for the probabilities of all queue lengths and for all queuing utilizations, including ones that are very small and some that are significantly larger than one. Having an excellent approximation for the probability of an empty queue generates an approximation of the expected outflow of the queueing system. Comparisons to several well-established approximations from the literature show significant improvements in several numerical examples.

Citation: Dieter Armbruster, Simone Göttlich, Stephan Knapp. Continuous approximation of $ M_t/M_t/ 1 $ distributions with application to production. Journal of Computational Dynamics, 2020, 7 (2) : 243-269. doi: 10.3934/jcd.2020010
References:
[1]

D. ArmbrusterD. Marthaler and C. Ringhofer, Kinetic and fluid model hierarchies for supply chains, Multiscale Model. Simul., 2 (2003), 43-61.  doi: 10.1137/S1540345902419616.  Google Scholar

[2]

D. Armbruster and R. Uzsoy, Continuous dynamic models, clearing functions, and discrete-event simulation in aggregate production planning, INFORMS TutORials in Operations Research, (2014). doi: 10.1287/educ.1120.0102.  Google Scholar

[3]

D. Armbruster and M. Wienke, Kinetic models and intrinsic timescales: Simulation comparison for a 2nd order queueing model, Kinet. Relat. Models, 12 (2019), 177-193.  doi: 10.3934/krm.2019008.  Google Scholar

[4]

N. BellomoC. Bianca and V. Coscia, On the modeling of crowd dynamics: An overview and research perspectives, SeMA J., 54 (2011), 25-46.  doi: 10.1007/bf03322586.  Google Scholar

[5]

H. Chen and D. D. Yao, Fundamentals of Queueing Networks: Performance, Asymptotics, and Optimization, vol. 46, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-5301-1.  Google Scholar

[6]

R. M. ColomboM. Herty and M. Mercier, Control of the continuity equation with a non local flow, ESAIM Control Optim. Calc. Var., 17 (2011), 353-379.  doi: 10.1051/cocv/2010007.  Google Scholar

[7]

J.-M. Coron and Z. Wang, Controllability for a scalar conservation law with nonlocal velocity, J. Differential Equations, 252 (2012), 181-201.  doi: 10.1016/j.jde.2011.08.042.  Google Scholar

[8]

E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics, vol. 12 of MS & A. Modeling, Simulation and Applications, Springer, Cham, 2014. doi: 10.1007/978-3-319-06620-2.  Google Scholar

[9]

P. Degond and C. Ringhofer, Stochastic dynamics of long supply chains with random breakdowns, SIAM J. Appl. Math., 68 (2007), 59-79.  doi: 10.1137/060674302.  Google Scholar

[10]

M. Garavello and B. Piccoli, Traffic Flow on Networks, AIMS Series on Applied Mathematics, 1. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.  Google Scholar

[11]

D. Gross, J. F. Shortle, J. M. Thompson and C. M. Harris, Fundamentals of Queueing Theory, 4th edition, Wiley Series in Probability and Statistics, John Wiley & Sons, Inc., Hoboken, NJ, 2008. doi: 10.1002/9781118625651.  Google Scholar

[12]

C. Grossmann and H.-G. Roos, Numerical Treatment of Partial Differential Equations, Universitext, Springer, Berlin, 2007, Translated and revised from the 3rd (2005) German edition by Martin Stynes. doi: 10.1007/978-3-540-71584-9.  Google Scholar

[13]

A. Keimer and L. Pflug, Existence, uniqueness and regularity results on nonlocal balance laws, J. Differential Equations, 263 (2017), 4023-4069.  doi: 10.1016/j.jde.2017.05.015.  Google Scholar

[14]

K. G. Kempf, P. Keskinocak and R. Uzsoy, Planning Production and Inventories in the Extended Enterprise, vol. 2, Springer, 2011. Google Scholar

[15]

Y. M. Ko and N. Gautam, Critically loaded time-varying multiserver queues: Computational challenges and approximations, INFORMS J. Comput., 25 (2013), 285-301.  doi: 10.1287/ijoc.1120.0502.  Google Scholar

[16]

M. La MarcaD. ArmbrusterM. Herty and C. Ringhofer, Control of continuum models of production systems, IEEE Trans. Automat. Control, 55 (2010), 2511-2526.  doi: 10.1109/TAC.2010.2046925.  Google Scholar

[17]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968.  Google Scholar

[18]

G. Lamm and K. Schulten, Extended brownian dynamics. Ⅱ. reactive, nonlinear diffusion, J. Chem. Phys, 78 (1983), 2713-2734.  doi: 10.1063/1.445002.  Google Scholar

[19] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.  doi: 10.1017/CBO9780511791253.  Google Scholar
[20]

M. J. Lighthill and G. B. Whitham, On kinematic waves Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London Ser. A, 229 (1955), 317-345.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[21]

A. Mandelbaum and W. A. Massey, Strong approximations for time-dependent queues, Math. Oper. Res., 20 (1995), 33-64.  doi: 10.1287/moor.20.1.33.  Google Scholar

[22]

A. MandelbaumW. A. Massey and M. I. Reiman, Strong approximations for Markovian service networks, Queueing Systems Theory Appl., 30 (1998), 149-201.  doi: 10.1023/A:1019112920622.  Google Scholar

[23]

W. A. Massey and J. Pender, Gaussian skewness approximation for dynamic rate multi-server queues with abandonment, Queueing Syst., 75 (2013), 243-277.  doi: 10.1007/s11134-012-9340-8.  Google Scholar

[24]

G. F. Newell, Queues with time-dependent arrival rates. Ⅰ. The transition through saturation, J. Appl. Probability, 5 (1968), 436-451.  doi: 10.2307/3212264.  Google Scholar

[25]

G. F. Newell, Queues with time-dependent arrival rates. Ⅱ. The maximum queue and the return to equilibrium, J. Appl. Probability, 5 (1968), 579-590.  doi: 10.1017/S0021900200114421.  Google Scholar

[26]

G. F. Newell, Queues with time-dependent arrival rates. Ⅲ. A mild rush hour, J. Appl. Probability, 5 (1968), 591-606.  doi: 10.1017/S0021900200114433.  Google Scholar

[27]

J. Pender, A Poisson-Charlier approximation for nonstationary queues, Oper. Res. Lett., 42 (2014), 293-298.  doi: 10.1016/j.orl.2014.05.001.  Google Scholar

[28]

P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.  Google Scholar

[29]

K. L. Rider, A simple approximation to the average queue size in the time-dependent $M/M/1$ queue, J. Assoc. Comput. Mach., 23 (1976), 361-367.  doi: 10.1145/321941.321955.  Google Scholar

[30]

M. v. Smoluchowski, Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, part ⅰ and part ⅱ, Physik. Z., 17 (1916), 557–571 (part Ⅰ); 585–599 (part Ⅱ). Google Scholar

[31]

M. v. Smoluchowski, Über Brownsche Molekularbewegung unter Einwirkung äußerer Kräfte und deren Zusammenhang mit der verallgemeinerten Diffusionsgleichung, Ann. Physik, 48 (1916), 1103-1112.   Google Scholar

[32]

W. A. Strauss, Partial Differential Equations, 2nd edition, John Wiley & Sons, Ltd., Chichester, 2008.  Google Scholar

[33]

W.-P. Wang, D. Tipper and S. Banerjee, A Simple Approximation for Modeling Nonstationary Queues, in Proceedings of IEEE INFOCOM '96. Conference on Computer Communications, IEEE Comput. Soc. Press, 1996. Google Scholar

[34]

W. Whitt, Time-varying queues, Queueing Models and Service Management, 1 (2018), 079-164.   Google Scholar

[35]

M. Wienke, An Aggregate Second Order Continuum Model for Transient Production Planning, PhD thesis, Arizona State University, 2015, https://repository.asu.edu/attachments/162150/content/Wienke_asu_0010E_15448.pdf  Google Scholar

show all references

References:
[1]

D. ArmbrusterD. Marthaler and C. Ringhofer, Kinetic and fluid model hierarchies for supply chains, Multiscale Model. Simul., 2 (2003), 43-61.  doi: 10.1137/S1540345902419616.  Google Scholar

[2]

D. Armbruster and R. Uzsoy, Continuous dynamic models, clearing functions, and discrete-event simulation in aggregate production planning, INFORMS TutORials in Operations Research, (2014). doi: 10.1287/educ.1120.0102.  Google Scholar

[3]

D. Armbruster and M. Wienke, Kinetic models and intrinsic timescales: Simulation comparison for a 2nd order queueing model, Kinet. Relat. Models, 12 (2019), 177-193.  doi: 10.3934/krm.2019008.  Google Scholar

[4]

N. BellomoC. Bianca and V. Coscia, On the modeling of crowd dynamics: An overview and research perspectives, SeMA J., 54 (2011), 25-46.  doi: 10.1007/bf03322586.  Google Scholar

[5]

H. Chen and D. D. Yao, Fundamentals of Queueing Networks: Performance, Asymptotics, and Optimization, vol. 46, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-5301-1.  Google Scholar

[6]

R. M. ColomboM. Herty and M. Mercier, Control of the continuity equation with a non local flow, ESAIM Control Optim. Calc. Var., 17 (2011), 353-379.  doi: 10.1051/cocv/2010007.  Google Scholar

[7]

J.-M. Coron and Z. Wang, Controllability for a scalar conservation law with nonlocal velocity, J. Differential Equations, 252 (2012), 181-201.  doi: 10.1016/j.jde.2011.08.042.  Google Scholar

[8]

E. Cristiani, B. Piccoli and A. Tosin, Multiscale Modeling of Pedestrian Dynamics, vol. 12 of MS & A. Modeling, Simulation and Applications, Springer, Cham, 2014. doi: 10.1007/978-3-319-06620-2.  Google Scholar

[9]

P. Degond and C. Ringhofer, Stochastic dynamics of long supply chains with random breakdowns, SIAM J. Appl. Math., 68 (2007), 59-79.  doi: 10.1137/060674302.  Google Scholar

[10]

M. Garavello and B. Piccoli, Traffic Flow on Networks, AIMS Series on Applied Mathematics, 1. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.  Google Scholar

[11]

D. Gross, J. F. Shortle, J. M. Thompson and C. M. Harris, Fundamentals of Queueing Theory, 4th edition, Wiley Series in Probability and Statistics, John Wiley & Sons, Inc., Hoboken, NJ, 2008. doi: 10.1002/9781118625651.  Google Scholar

[12]

C. Grossmann and H.-G. Roos, Numerical Treatment of Partial Differential Equations, Universitext, Springer, Berlin, 2007, Translated and revised from the 3rd (2005) German edition by Martin Stynes. doi: 10.1007/978-3-540-71584-9.  Google Scholar

[13]

A. Keimer and L. Pflug, Existence, uniqueness and regularity results on nonlocal balance laws, J. Differential Equations, 263 (2017), 4023-4069.  doi: 10.1016/j.jde.2017.05.015.  Google Scholar

[14]

K. G. Kempf, P. Keskinocak and R. Uzsoy, Planning Production and Inventories in the Extended Enterprise, vol. 2, Springer, 2011. Google Scholar

[15]

Y. M. Ko and N. Gautam, Critically loaded time-varying multiserver queues: Computational challenges and approximations, INFORMS J. Comput., 25 (2013), 285-301.  doi: 10.1287/ijoc.1120.0502.  Google Scholar

[16]

M. La MarcaD. ArmbrusterM. Herty and C. Ringhofer, Control of continuum models of production systems, IEEE Trans. Automat. Control, 55 (2010), 2511-2526.  doi: 10.1109/TAC.2010.2046925.  Google Scholar

[17]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968.  Google Scholar

[18]

G. Lamm and K. Schulten, Extended brownian dynamics. Ⅱ. reactive, nonlinear diffusion, J. Chem. Phys, 78 (1983), 2713-2734.  doi: 10.1063/1.445002.  Google Scholar

[19] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.  doi: 10.1017/CBO9780511791253.  Google Scholar
[20]

M. J. Lighthill and G. B. Whitham, On kinematic waves Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London Ser. A, 229 (1955), 317-345.  doi: 10.1098/rspa.1955.0089.  Google Scholar

[21]

A. Mandelbaum and W. A. Massey, Strong approximations for time-dependent queues, Math. Oper. Res., 20 (1995), 33-64.  doi: 10.1287/moor.20.1.33.  Google Scholar

[22]

A. MandelbaumW. A. Massey and M. I. Reiman, Strong approximations for Markovian service networks, Queueing Systems Theory Appl., 30 (1998), 149-201.  doi: 10.1023/A:1019112920622.  Google Scholar

[23]

W. A. Massey and J. Pender, Gaussian skewness approximation for dynamic rate multi-server queues with abandonment, Queueing Syst., 75 (2013), 243-277.  doi: 10.1007/s11134-012-9340-8.  Google Scholar

[24]

G. F. Newell, Queues with time-dependent arrival rates. Ⅰ. The transition through saturation, J. Appl. Probability, 5 (1968), 436-451.  doi: 10.2307/3212264.  Google Scholar

[25]

G. F. Newell, Queues with time-dependent arrival rates. Ⅱ. The maximum queue and the return to equilibrium, J. Appl. Probability, 5 (1968), 579-590.  doi: 10.1017/S0021900200114421.  Google Scholar

[26]

G. F. Newell, Queues with time-dependent arrival rates. Ⅲ. A mild rush hour, J. Appl. Probability, 5 (1968), 591-606.  doi: 10.1017/S0021900200114433.  Google Scholar

[27]

J. Pender, A Poisson-Charlier approximation for nonstationary queues, Oper. Res. Lett., 42 (2014), 293-298.  doi: 10.1016/j.orl.2014.05.001.  Google Scholar

[28]

P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.  doi: 10.1287/opre.4.1.42.  Google Scholar

[29]

K. L. Rider, A simple approximation to the average queue size in the time-dependent $M/M/1$ queue, J. Assoc. Comput. Mach., 23 (1976), 361-367.  doi: 10.1145/321941.321955.  Google Scholar

[30]

M. v. Smoluchowski, Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, part ⅰ and part ⅱ, Physik. Z., 17 (1916), 557–571 (part Ⅰ); 585–599 (part Ⅱ). Google Scholar

[31]

M. v. Smoluchowski, Über Brownsche Molekularbewegung unter Einwirkung äußerer Kräfte und deren Zusammenhang mit der verallgemeinerten Diffusionsgleichung, Ann. Physik, 48 (1916), 1103-1112.   Google Scholar

[32]

W. A. Strauss, Partial Differential Equations, 2nd edition, John Wiley & Sons, Ltd., Chichester, 2008.  Google Scholar

[33]

W.-P. Wang, D. Tipper and S. Banerjee, A Simple Approximation for Modeling Nonstationary Queues, in Proceedings of IEEE INFOCOM '96. Conference on Computer Communications, IEEE Comput. Soc. Press, 1996. Google Scholar

[34]

W. Whitt, Time-varying queues, Queueing Models and Service Management, 1 (2018), 079-164.   Google Scholar

[35]

M. Wienke, An Aggregate Second Order Continuum Model for Transient Production Planning, PhD thesis, Arizona State University, 2015, https://repository.asu.edu/attachments/162150/content/Wienke_asu_0010E_15448.pdf  Google Scholar

Figure 1.  Graphical representation of a single queue service unit
Figure 2.  Comparison of queue-length distribution with exact ODE system and continuous approximation in the moderate ramp up case, (a) probability $ p_0(t) $, (b) $ p_3(t) $, (c) supremum error
Figure 3.  Comparison of queue-length distribution with exact ODE system and continuous approximation in the strong ramp up case, (a) probability $ p_0(t) $, (b) $ p_3(t) $, (c) supremum error
Figure 4.  Comparison of queue-length distribution with exact ODE system and continuous approximation in the very strong ramp up case, (a) probability $ p_0(t) $, (b) $ p_{10}(t) $, (c) $ p_{40}(t) $, (d) supremum error
Figure 5.  Comparison of queue-length distribution with exact ODE system and continuous approximation in the moderate ramp down case, (a) probability $ p_0(t) $, (b) $ p_3(t) $, (c) supremum error
Figure 6.  Comparison of queue-length distribution with exact ODE system and continuous approximation in the strong ramp down case, (a) probability $ p_0(t) $, (b) $ p_3(t) $, (c) supremum error
Figure 7.  Comparison of queue-length distribution with exact ODE system and continuous approximation in the moderate cyclic inflow rate case
Figure 8.  Comparison of queue-length distribution with exact ODE system and continuous approximation in the strong cyclic inflow rate case
Figure 9.  Comparison of queue-length distribution with exact ODE-system and continuous approximation in the very strong cyclic inflow rate case
Figure 10.  Comparison of the expected outflow using approximations from the literature (K, GVA, GSA) and our approach (A), where the inflow and processing rates are taken from [29], see (b)
Figure 11.  Comparison of the expected outflow using approximations from the literature (K, GVA, GSA) and our approach (A), where the inflow and processing rates are highly transient and periodic, see (b)
Table 1.  Error of the continuous approximation for different periods in the moderate, strong and very strong cyclic case
$ T_{\text{Per}} $ $ \max_j \|\epsilon^A(t_j)\|_\infty \;[10^{-3}] $
moderate cyclic case strong cyclic case very strong cyclic case
25 1.4876 6.8495 6.5022
10 1.7911 8.8031 11.6854
5 2.2439 12.0694 17.2880
2 3.1356 17.1375 25.8903
1 3.2942 18.1220 30.9673
$ T_{\text{Per}} $ $ \max_j \|\epsilon^A(t_j)\|_\infty \;[10^{-3}] $
moderate cyclic case strong cyclic case very strong cyclic case
25 1.4876 6.8495 6.5022
10 1.7911 8.8031 11.6854
5 2.2439 12.0694 17.2880
2 3.1356 17.1375 25.8903
1 3.2942 18.1220 30.9673
Table 2.  Error between the approximations and the ODE system result for inflow from [29]
$ \overline{Out}^\text{A}(t) $ $ \overline{Out}^\text{K}(t) $ $ \overline{Out}^\text{GVA}(t) $ $ \overline{Out}^\text{GSA}(t) $
$ \|\cdot\|_\infty $ $ 0.0457 $ $ 0.6830 $ $ 7.0672 $ $ 1.0314 $
$ \|\cdot\|_{L^1} $ $ 0.3522 $ $ 3.9450 $ $ 3.8772 $ $ 3.4053 $
$ \overline{Out}^\text{A}(t) $ $ \overline{Out}^\text{K}(t) $ $ \overline{Out}^\text{GVA}(t) $ $ \overline{Out}^\text{GSA}(t) $
$ \|\cdot\|_\infty $ $ 0.0457 $ $ 0.6830 $ $ 7.0672 $ $ 1.0314 $
$ \|\cdot\|_{L^1} $ $ 0.3522 $ $ 3.9450 $ $ 3.8772 $ $ 3.4053 $
Table 3.  Error between the approximations and the ODE system result for cyclic inflow
$ \overline{Out}^\text{A}(t) $ $ \overline{Out}^\text{K}(t) $ $ \overline{Out}^\text{GVA}(t) $ $ \overline{Out}^\text{GSA}(t) $
$ \|\cdot\|_\infty $ $ 0.0196 $ $ 0.9041 $ $ 0.5876 $ $ 0.2901 $
$ \|\cdot\|_{L^1} $ $ 0.2622 $ $ 10.5651 $ $ 4.8328 $ $ 2.8259 $
$ \overline{Out}^\text{A}(t) $ $ \overline{Out}^\text{K}(t) $ $ \overline{Out}^\text{GVA}(t) $ $ \overline{Out}^\text{GSA}(t) $
$ \|\cdot\|_\infty $ $ 0.0196 $ $ 0.9041 $ $ 0.5876 $ $ 0.2901 $
$ \|\cdot\|_{L^1} $ $ 0.2622 $ $ 10.5651 $ $ 4.8328 $ $ 2.8259 $
[1]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[2]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[3]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[4]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[5]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[6]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[7]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[8]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[9]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[10]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[11]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[12]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[13]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[14]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[15]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[16]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[17]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[18]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[19]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[20]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

 Impact Factor: 

Metrics

  • PDF downloads (36)
  • HTML views (206)
  • Cited by (0)

[Back to Top]