• Previous Article
    On the development of symmetry-preserving finite element schemes for ordinary differential equations
  • JCD Home
  • This Issue
  • Next Article
    An energy dissipative semi-discrete finite-difference method on staggered meshes for the 3D compressible isothermal Navier–Stokes–Cahn–Hilliard equations
December  2020, 7(2): 313-337. doi: 10.3934/jcd.2020013

Uncertainty in finite-time Lyapunov exponent computations

1. 

School of Mathematical Sciences, University of Adelaide, Adelaide SA 5005, Australia

2. 

Department of Mechanical Engineering, Technische Universiteit Eindhoven, 5612 AZ Eindhoven, The Netherlands

Received  September 2019 Published  July 2020

Fund Project: Partial support from the Australian Research Council (grants FT130100484 and DP200101764) and the Australian Department of Education and Training (Endeavour Research Leadership Award) are gratefully acknowledged

The Finite-Time Lyapunov Exponent (FTLE) is a well-established numerical tool for assessing stretching rates of initial parcels of fluid, which are advected according to a given time-varying velocity field (which is often available only as data). When viewed as a field over initial conditions, the FTLE's spatial structure is often used to infer the nonhomogeneous transport. Given the measurement and resolution errors inevitably present in the unsteady velocity data, the computed FTLE field should in reality be treated only as an approximation. A method which, for the first time, is able for attribute spatially-varying errors to the FTLE field is developed. The formulation is, however, confined to two-dimensional flows. Knowledge of the errors prevent reaching erroneous conclusions based only on the FTLE field. Moreover, it is established that increasing the spatial resolution does not improve the accuracy of the FTLE field in the presence of velocity uncertainties, and indeed has the opposite effect. Stochastic simulations are used to validate and exemplify these results, and demonstrate the computability of the error field.

Citation: Sanjeeva Balasuriya. Uncertainty in finite-time Lyapunov exponent computations. Journal of Computational Dynamics, 2020, 7 (2) : 313-337. doi: 10.3934/jcd.2020013
References:
[1]

M. R. Allshouse and T. Peacock, Refining finite-time Lyapunov exponent ridges and the challenges of classifying them, Chaos, 25 (2015), 14pp. doi: 10.1063/1.4928210.  Google Scholar

[2]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[3]

H. Babaee, M. Farazmand, G. Haller and T. P. Sapsis, Reduced-order description of transient instabilities and computation of finite-time Lyapunov exponents, Chaos, 27 (2017), 12pp. doi: 10.1063/1.4984627.  Google Scholar

[4]

M. BadasF. Domenichini and G. Querzoli, Quantification of the blood mixing in the left ventricle using finite time Lyapunov exponents, Meccanica, 52 (2017), 529-544.  doi: 10.1007/s11012-016-0364-8.  Google Scholar

[5]

S. Balasuriya, Barriers and Transport in Unsteady Flows. A Melnikov Approach, Mathematical Modeling and Computation, 21, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016. doi: 10.1137/1.9781611974584.ch1.  Google Scholar

[6]

S. Balasuriya, A numerical scheme for computing stable and unstable manifolds in nonautonomous flows, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 22pp. doi: 10.1142/S021812741630041X.  Google Scholar

[7]

S. Balasuriya, Stochastic sensitivity: A computable Lagrangian uncertainty measure for unsteady flows, SIAM Review, in press. Google Scholar

[8]

S. Balasuriya and G. Gottwald, Estimating stable and unstable sets and their role as transport barriers in stochastic flows, Phys. Rev. E, 98 (2018). doi: 10.1103/PhysRevE.98.013106.  Google Scholar

[9]

S. BalasuriyaR. Kalampattel and N. T. Ouellette, Hyperbolic neighborhoods as organizers of finite-time exponential stretching, J. Fluid Mech., 807 (2016), 509-545.  doi: 10.1017/jfm.2016.633.  Google Scholar

[10]

S. BalasuriyaN. T. Ouellette and I. I. Rypina, Generalized Lagrangian coherent structures, Phys. D, 372 (2018), 31-51.  doi: 10.1016/j.physd.2018.01.011.  Google Scholar

[11]

A. BergerT. S. Doan and S. Siegmund, A definition of spectrum for differential equations on finite time, J. Differential Equations, 246 (2009), 1098-1118.  doi: 10.1016/j.jde.2008.06.036.  Google Scholar

[12]

F. Beron-Vera, Mixing by low- and high-resolution surface geostrophic currents, J. Geophys. Res. Oceans, 115 (2010). doi: 10.1029/2009JC006006.  Google Scholar

[13]

F. Beron-VeraM. OlascoagaM. Brown and H.. Koçak, Zonal jets as meridional transport barriers in the subtropical and polar lower stratosphere, J. Atmos. Sci., 69 (2012), 753-767.  doi: 10.1175/JAS-D-11-084.1.  Google Scholar

[14]

A. BozorgMagham and S. Ross, Atmospheric Lagrangian coherent structures considering unresolved turbulence and forecast uncertainty, Commun. Nonlin. Sci. Numer. Simul., 22 (2015), 964-979.  doi: 10.1016/j.cnsns.2014.07.011.  Google Scholar

[15]

A. E. BozorgMaghamS. D. Ross and D. G. Schmale, Real-time prediction of atmospheric Lagrangian coherent structures based on forecast data: An application and error analysis, Phys. D, 258 (2013), 47-60.  doi: 10.1016/j.physd.2013.05.003.  Google Scholar

[16]

S. L. Brunton and C. W. Rowley, Fast computation of finite-time Lyapunov exponent fields for unsteady flows, Chaos, 20 (2010), 12pp. doi: 10.1063/1.3270044.  Google Scholar

[17]

T. F. Dauche, C. Ates, T. Rapp, M. C. Keller and G. Chaussonnet, et al., Analyzing the interaction of vortex and gas-liquid interface dynamics in fuel spray nozzles by means of Lagrangian-coherent structures (2D), Energies, 12 (2019). doi: 10.3390/en12132552.  Google Scholar

[18]

F. d'Ovidio, V. Fernández, E. Hernández-Garcia and C. López, Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents, Geophys. Res. Lett., 31 (2004). doi: 10.1029/2004GL020328.  Google Scholar

[19]

J. Finn and S. V. Apte, Integrated computation of finite-time Lyapunov exponent fields during direct numerical simulation of unsteady flows, Chaos, 23 (2013), 14pp. doi: 10.1063/1.4795749.  Google Scholar

[20]

A. FortinT. Briffard and A. Garon, A more efficient anisotropic mesh adaptation for the computation of Lagrangian coherent structures, J. Comp. Phys., 285 (2015), 100-110.  doi: 10.1016/j.jcp.2015.01.010.  Google Scholar

[21]

D. Garaboa-PazJ. Eiras-Barca and V. Perez-Munuzuri, Climatology of Lyapunov exponents: The link between atmospheric rivers and large-scale mixing variability, Earth System Dyn., 8 (2017), 865-873.  doi: 10.5194/esd-8-865-2017.  Google Scholar

[22]

H. GuoW. HeT. PeterkaH.-W. ShenS. Collis and J. Helmus, Finite-time Lyapunov exponents and Lagrangian coherent structures in uncertain unsteady flows, IEEE Trans. Visual. Comp. Graphics, 22 (2016), 1672-1682.  doi: 10.1109/TVCG.2016.2534560.  Google Scholar

[23]

A. Hadjighasem, M. Farazmand, D. Blazevski, G. Froyland and G. Haller, A critical comparison of Lagrangian methods for coherent structure detection, Chaos, 27 (2017), 25pp. doi: 10.1063/1.4982720.  Google Scholar

[24]

G. Haller, A variational theory of hyperbolic Lagrangian coherent structures, Phys. D, 240 (2011), 574-598.  doi: 10.1016/j.physd.2010.11.010.  Google Scholar

[25]

G. Haller, Lagrangian coherent structures, in Annual Review of Fluid Mechanics, Annu. Rev. Fluid Mech., 47, Annual Reviews, Palo Alto, CA, 2015,137–162. doi: 10.1146/annurev-fluid-010313-141322.  Google Scholar

[26]

G. Haller and T. Sapsis, Lagrangian coherent structures and the smallest finite-time Lyapunov exponent, Chaos, 21 (2011), 7pp. doi: 10.1063/1.3579597.  Google Scholar

[27]

G.-S. HeC. PanL.-H. FengQ. Gao and J.-J. Wang, Evolution of Lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layer, J. Fluid Mech., 792 (2016), 274-306.  doi: 10.1017/jfm.2016.81.  Google Scholar

[28]

I. Hernández-CarrascoC. LópezE. Hernández-Garcia and A. Turiel, How reliable are finite-size Lyapunov exponents for the assessment of ocean dynamics?, Ocean Model., 36 (2011), 208-218.  doi: 10.1016/j.ocemod.2010.12.006.  Google Scholar

[29]

P. Holmes and D. Whitley, On the attracting set for Duffing's equation, Phys. D, 7 (1983), 111-123.  doi: 10.1016/0167-2789(83)90121-5.  Google Scholar

[30]

Z. Y. Hu and M. Zhou, Lagrangian analysis of surface transport patterns in the northern south China sea, Deep Sea Res. II: Topical Stud. Oceanography, 167 (2019), 4-13.  doi: 10.1016/j.dsr2.2019.06.020.  Google Scholar

[31]

F. HuhnA. von KamekeS. Allen-PerkinsP. MonteroA. Venancio and V. Pérez-Muñuzuri, Horizontal Lagrangian transport in a tidal-driven estuary–Transport barriers attached to prominent coastal boundaries, Continental Shelf Res., 39-40 (2012), 1-13.  doi: 10.1016/j.csr.2012.03.005.  Google Scholar

[32]

F. Huhn, A. von Kameke, V. Pérez-Muñuzuri, M. J. Olascoaga and F. J. Beron-Vera, The impact of advective transport by the South Indian Ocean Countercurrent on the Madagascar plankton bloom, Geophys. Res. Lett., 39 (2012). doi: 10.1029/2012GL051246.  Google Scholar

[33]

H. KafiabadP. Chan and G. Haller, Lagrangian detection of wind shear for landing aircraft, J. Atmos. Ocean. Tech., 30 (2013), 2808-2819.  doi: 10.1175/JTECH-D-12-00186.1.  Google Scholar

[34]

E. KaiV. RossiJ. SudreH. WeirmerskirchC. LopezE. Hernandez-GarciaF. Marsac and V. Garcon, Top marine predators track Lagrangian coherent structures, Proc. Nat. Acad. Sci., 106 (2009), 8245-8250.  doi: 10.1073/pnas.0811034106.  Google Scholar

[35]

A. KamekeS. KastensS. RüttingerS. Herres-Pawlis and M. Schlüter, How coherent structures dominate the residence time in a bubble wake: An experimental example, Chem. Engrg. Sci., 207 (2019), 317-326.  doi: 10.1016/j.ces.2019.06.033.  Google Scholar

[36]

D. Karrasch and G. Haller, Do finite-size Lyapunov exponents detect coherent structures?, Chaos, 23 (2013), 11pp. doi: 10.1063/1.4837075.  Google Scholar

[37]

S. KeatingK. Smith and P. Kramer, Diagnosing lateral mixing in the upper ocean with virtual tracers: Spatial and temporal resolution dependence, J. Phys. Oceanography, 41 (2011), 1512-1534.  doi: 10.1175/2011JPO4580.1.  Google Scholar

[38]

P. E. Kloeden, E. Platen and H. Schurz, Numerical Solution of SDE Through Computer Experiments, Universitext, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-642-57913-4.  Google Scholar

[39]

T.-Y. Koh and B. Legras, Hyperbolic lines and the stratospheric polar vortex, Chaos, 12 (2002), 382-394.  doi: 10.1063/1.1480442.  Google Scholar

[40]

A. KumarS. Dwivedi and A. Pandey, Quantifying predictability of sea ice around the Indian Antarctic stations using coupled ocean sea ice model with shelf ice, Polar Sci., 18 (2018), 83-93.  doi: 10.1016/j.polar.2018.04.003.  Google Scholar

[41]

G. LacorataR. CorradoF. Falcini and R. Santoleri, FSLE analysis and validation of Lagrangian simulations based on satellite-derived GlobCurrent velocity data, Remote Sensing Environ., 221 (2019), 136-143.  doi: 10.1016/j.rse.2018.11.013.  Google Scholar

[42]

F. Lekien and S. D. Ross, The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds, Chaos, 20 (2010), 20pp. doi: 10.1063/1.3278516.  Google Scholar

[43]

S. Leung, An Eulerian approach for computing the finite time Lyapunov exponent, J. Comput. Phys., 230 (2011), 3500-3524.  doi: 10.1016/j.jcp.2011.01.046.  Google Scholar

[44]

D. Lipinski and K. Mohseni, A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures, Chaos, 20 (2010), 9pp. doi: 10.1063/1.3270049.  Google Scholar

[45]

K. May-Newman, V. Vu and B. Herold, Modeling the link between left ventricular flow and thromboembolic risk using Lagrangian coherent structures, Fluids, 1 (2016). doi: 10.3390/fluids1040038.  Google Scholar

[46]

P. Miron, J. Vétel and A. Garon, On the use of the finite-time Lyapunov exponent to reveal complex flow physics in the wake of a mechanical valve, Exp. Fluids, 55 (2014). doi: 10.1007/s00348-014-1814-5.  Google Scholar

[47]

D. A. Nelson and G. B. Jacobs, DG-FTLE: Lagrangian coherent structures with high-order discontinuous Galerkin methods, J. Comput. Phys., 295 (2015), 65-86.  doi: 10.1016/j.jcp.2015.03.040.  Google Scholar

[48]

Y.-K. Ng and S. Leung, Estimating the finite-time Lyapunov exponent from sparse Lagrangian trajectories, Commun. Comput. Phys., 26 (2019), 1143-1177.  doi: 10.4208/cicp.OA-2018-0149.  Google Scholar

[49]

G. Norgard and P.-T. Bremmer, Second derivative ridges are straight lines and the implications for computing Lagrangian Coherent Structures, Phys. D, 241 (2012), 1475-1476.  doi: 10.1016/j.physd.2012.05.006.  Google Scholar

[50]

B. Øksendahl, Stochastic Differential Equations, Universitext, Springer-Verlag, Berlin, 1995. doi: 10.1007/978-3-662-03185-8.  Google Scholar

[51]

A. B. Olcay, T. S. Pottebaum and P. S. Krueger, Sensitivity of Lagrangian coherent structure identification to flow field resolution and random errors, Chaos, 20 (2010), 10pp. doi: 10.1063/1.3276062.  Google Scholar

[52]

T. Peacock and J. Dabiri, Introduction to focus issue: Lagrangian coherent structures, Chaos, 20 (2010). doi: 10.1063/1.3278173.  Google Scholar

[53]

A. PojeA. HazaT. ÖzgökmenM. Magaldi and Z. Garrafo, Resolution dependent relative dispersion statistics in a hierarchy of ocean models, Ocean Model., 31 (2010), 36-50.  doi: 10.1016/j.ocemod.2009.09.002.  Google Scholar

[54]

M. Rockwood, T. Loiselle and M. Green, Practical concerns of implementing a finite-time Lyapunov exponent analysis with under-resolved data, Exp. Fluids, 60 (2019). doi: 10.1007/s00348-018-2658-1.  Google Scholar

[55]

M. RudkoI. Kamenkovich and D. Nolan, Stability of baroclinic vortices on the $\beta$ plane and implications for transport, J. Phys. Oceanography, 46 (2016), 3245-3262.  doi: 10.1175/JPO-D-16-0067.1.  Google Scholar

[56]

R. Samelson, Lagrangian motion, coherent structures, and lines of persistent material strain, Annu. Rev. Mar. Sci., 5 (2013), 137-163.  doi: 10.1146/annurev-marine-120710-100819.  Google Scholar

[57]

R. Sampath, M. Mathur and S. Chakravarthy, Lagrangian coherent structures during combustion instability in a premixed-flame backward-step combustor, Phys. Rev. E, 94 (2016). doi: 10.1103/PhysRevE.94.062209.  Google Scholar

[58]

B. SandstedeS. BalasuriyaC. K. R. T. Jones and P. Miller, Melnikov theory for finite-time vector fields, Nonlinearity, 13 (2000), 1357-1377.  doi: 10.1088/0951-7715/13/4/321.  Google Scholar

[59]

K. ScalesE. HazenM. JacoxF. Castruccio and S. Bograd, Fisheries bycatch risk to marine megafauna is intensified in Lagrangian coherent structures, Proc. Nat. Acad. Sci., 115 (2018), 7362-7367.  doi: 10.1073/pnas.1801270115.  Google Scholar

[60]

B. Schindler, R. Peikert, R. Fuchs and H. Theisl, Ridge concepts for the visualization of Lagrangian coherent structures, in Topological Methods in Data Analysis and Visualization II, Math. Vis., Springer, Heidelberg, 2012,221–236. doi: 10.1007/978-3-642-23175-9_15.  Google Scholar

[61]

C. Senatore and S. Ross, Detection and characterization of transport barriers in complex flows via ridge extraction of the finite time Lyapunov exponent field, Internat. J. Numer. Methods Engrg., 86 (2011), 1163-1174.  doi: 10.1002/nme.3101.  Google Scholar

[62]

S. Shadden, Lagrangian coherent structures, in Transport and Mixing in Laminar Flows: From Microfluidics to Oceanic Currents, Wiley, 2011. doi: 10.1002/9783527639748.ch3.  Google Scholar

[63]

S. C. ShaddenF. Lekien and J. E. Marsden, Definition and properties of Lagrangian coherent structures from Lyapunov exponents in two-dimensional aperiodic flows, Phys. D, 212 (2005), 271-304.  doi: 10.1016/j.physd.2005.10.007.  Google Scholar

[64]

E. Shuckburgh, Mapping unstable manifolds using drifters/floats in a Southern Ocean field campaign, in Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, 1479, AIP, 2012,650–653. doi: 10.1063/1.4756218.  Google Scholar

[65]

K. G. D. Sulalitha Priyankara, S. Balasuriya and E. Bollt, Quantifying the role of folding in nonautonomous flows: The unsteady double-gyre, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 19pp. doi: 10.1142/S0218127417501565.  Google Scholar

[66]

P. Tallagragada and S. D. Ross, A set oriented definition of finite-time Lyapunov exponents and coherent sets, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 1106-1126.  doi: 10.1016/j.cnsns.2012.09.017.  Google Scholar

[67]

W. TangP. Chan and G. Haller, Lagrangian coherent structure analysis of terminal winds detected by LIDAR. Part 1: Turbulent structures, J. Appl. Meteor. Climatol., 50 (2011), 325-338.  doi: 10.1175/2010JAMC2508.1.  Google Scholar

[68]

J.-L. Thiffeault and A. H. Boozer, Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions, Chaos, 11 (2001), 16-28.  doi: 10.1063/1.1342079.  Google Scholar

[69]

G. You and S. Leung, An improved Eulerian approach for the finite time Lyapunov exponent, J. Sci. Comput., 76 (2018), 1407-1435.  doi: 10.1007/s10915-018-0669-y.  Google Scholar

[70]

M. ZhangH. ChenQ. WuX. LiL. Xiang and G. Wang, Experimental and numerical investigation of cavitating vortical patterns around a Tulin hydrofoil, Ocean Engrg., 173 (2019), 298-307.  doi: 10.1016/j.oceaneng.2018.12.064.  Google Scholar

show all references

References:
[1]

M. R. Allshouse and T. Peacock, Refining finite-time Lyapunov exponent ridges and the challenges of classifying them, Chaos, 25 (2015), 14pp. doi: 10.1063/1.4928210.  Google Scholar

[2]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[3]

H. Babaee, M. Farazmand, G. Haller and T. P. Sapsis, Reduced-order description of transient instabilities and computation of finite-time Lyapunov exponents, Chaos, 27 (2017), 12pp. doi: 10.1063/1.4984627.  Google Scholar

[4]

M. BadasF. Domenichini and G. Querzoli, Quantification of the blood mixing in the left ventricle using finite time Lyapunov exponents, Meccanica, 52 (2017), 529-544.  doi: 10.1007/s11012-016-0364-8.  Google Scholar

[5]

S. Balasuriya, Barriers and Transport in Unsteady Flows. A Melnikov Approach, Mathematical Modeling and Computation, 21, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016. doi: 10.1137/1.9781611974584.ch1.  Google Scholar

[6]

S. Balasuriya, A numerical scheme for computing stable and unstable manifolds in nonautonomous flows, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 22pp. doi: 10.1142/S021812741630041X.  Google Scholar

[7]

S. Balasuriya, Stochastic sensitivity: A computable Lagrangian uncertainty measure for unsteady flows, SIAM Review, in press. Google Scholar

[8]

S. Balasuriya and G. Gottwald, Estimating stable and unstable sets and their role as transport barriers in stochastic flows, Phys. Rev. E, 98 (2018). doi: 10.1103/PhysRevE.98.013106.  Google Scholar

[9]

S. BalasuriyaR. Kalampattel and N. T. Ouellette, Hyperbolic neighborhoods as organizers of finite-time exponential stretching, J. Fluid Mech., 807 (2016), 509-545.  doi: 10.1017/jfm.2016.633.  Google Scholar

[10]

S. BalasuriyaN. T. Ouellette and I. I. Rypina, Generalized Lagrangian coherent structures, Phys. D, 372 (2018), 31-51.  doi: 10.1016/j.physd.2018.01.011.  Google Scholar

[11]

A. BergerT. S. Doan and S. Siegmund, A definition of spectrum for differential equations on finite time, J. Differential Equations, 246 (2009), 1098-1118.  doi: 10.1016/j.jde.2008.06.036.  Google Scholar

[12]

F. Beron-Vera, Mixing by low- and high-resolution surface geostrophic currents, J. Geophys. Res. Oceans, 115 (2010). doi: 10.1029/2009JC006006.  Google Scholar

[13]

F. Beron-VeraM. OlascoagaM. Brown and H.. Koçak, Zonal jets as meridional transport barriers in the subtropical and polar lower stratosphere, J. Atmos. Sci., 69 (2012), 753-767.  doi: 10.1175/JAS-D-11-084.1.  Google Scholar

[14]

A. BozorgMagham and S. Ross, Atmospheric Lagrangian coherent structures considering unresolved turbulence and forecast uncertainty, Commun. Nonlin. Sci. Numer. Simul., 22 (2015), 964-979.  doi: 10.1016/j.cnsns.2014.07.011.  Google Scholar

[15]

A. E. BozorgMaghamS. D. Ross and D. G. Schmale, Real-time prediction of atmospheric Lagrangian coherent structures based on forecast data: An application and error analysis, Phys. D, 258 (2013), 47-60.  doi: 10.1016/j.physd.2013.05.003.  Google Scholar

[16]

S. L. Brunton and C. W. Rowley, Fast computation of finite-time Lyapunov exponent fields for unsteady flows, Chaos, 20 (2010), 12pp. doi: 10.1063/1.3270044.  Google Scholar

[17]

T. F. Dauche, C. Ates, T. Rapp, M. C. Keller and G. Chaussonnet, et al., Analyzing the interaction of vortex and gas-liquid interface dynamics in fuel spray nozzles by means of Lagrangian-coherent structures (2D), Energies, 12 (2019). doi: 10.3390/en12132552.  Google Scholar

[18]

F. d'Ovidio, V. Fernández, E. Hernández-Garcia and C. López, Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents, Geophys. Res. Lett., 31 (2004). doi: 10.1029/2004GL020328.  Google Scholar

[19]

J. Finn and S. V. Apte, Integrated computation of finite-time Lyapunov exponent fields during direct numerical simulation of unsteady flows, Chaos, 23 (2013), 14pp. doi: 10.1063/1.4795749.  Google Scholar

[20]

A. FortinT. Briffard and A. Garon, A more efficient anisotropic mesh adaptation for the computation of Lagrangian coherent structures, J. Comp. Phys., 285 (2015), 100-110.  doi: 10.1016/j.jcp.2015.01.010.  Google Scholar

[21]

D. Garaboa-PazJ. Eiras-Barca and V. Perez-Munuzuri, Climatology of Lyapunov exponents: The link between atmospheric rivers and large-scale mixing variability, Earth System Dyn., 8 (2017), 865-873.  doi: 10.5194/esd-8-865-2017.  Google Scholar

[22]

H. GuoW. HeT. PeterkaH.-W. ShenS. Collis and J. Helmus, Finite-time Lyapunov exponents and Lagrangian coherent structures in uncertain unsteady flows, IEEE Trans. Visual. Comp. Graphics, 22 (2016), 1672-1682.  doi: 10.1109/TVCG.2016.2534560.  Google Scholar

[23]

A. Hadjighasem, M. Farazmand, D. Blazevski, G. Froyland and G. Haller, A critical comparison of Lagrangian methods for coherent structure detection, Chaos, 27 (2017), 25pp. doi: 10.1063/1.4982720.  Google Scholar

[24]

G. Haller, A variational theory of hyperbolic Lagrangian coherent structures, Phys. D, 240 (2011), 574-598.  doi: 10.1016/j.physd.2010.11.010.  Google Scholar

[25]

G. Haller, Lagrangian coherent structures, in Annual Review of Fluid Mechanics, Annu. Rev. Fluid Mech., 47, Annual Reviews, Palo Alto, CA, 2015,137–162. doi: 10.1146/annurev-fluid-010313-141322.  Google Scholar

[26]

G. Haller and T. Sapsis, Lagrangian coherent structures and the smallest finite-time Lyapunov exponent, Chaos, 21 (2011), 7pp. doi: 10.1063/1.3579597.  Google Scholar

[27]

G.-S. HeC. PanL.-H. FengQ. Gao and J.-J. Wang, Evolution of Lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layer, J. Fluid Mech., 792 (2016), 274-306.  doi: 10.1017/jfm.2016.81.  Google Scholar

[28]

I. Hernández-CarrascoC. LópezE. Hernández-Garcia and A. Turiel, How reliable are finite-size Lyapunov exponents for the assessment of ocean dynamics?, Ocean Model., 36 (2011), 208-218.  doi: 10.1016/j.ocemod.2010.12.006.  Google Scholar

[29]

P. Holmes and D. Whitley, On the attracting set for Duffing's equation, Phys. D, 7 (1983), 111-123.  doi: 10.1016/0167-2789(83)90121-5.  Google Scholar

[30]

Z. Y. Hu and M. Zhou, Lagrangian analysis of surface transport patterns in the northern south China sea, Deep Sea Res. II: Topical Stud. Oceanography, 167 (2019), 4-13.  doi: 10.1016/j.dsr2.2019.06.020.  Google Scholar

[31]

F. HuhnA. von KamekeS. Allen-PerkinsP. MonteroA. Venancio and V. Pérez-Muñuzuri, Horizontal Lagrangian transport in a tidal-driven estuary–Transport barriers attached to prominent coastal boundaries, Continental Shelf Res., 39-40 (2012), 1-13.  doi: 10.1016/j.csr.2012.03.005.  Google Scholar

[32]

F. Huhn, A. von Kameke, V. Pérez-Muñuzuri, M. J. Olascoaga and F. J. Beron-Vera, The impact of advective transport by the South Indian Ocean Countercurrent on the Madagascar plankton bloom, Geophys. Res. Lett., 39 (2012). doi: 10.1029/2012GL051246.  Google Scholar

[33]

H. KafiabadP. Chan and G. Haller, Lagrangian detection of wind shear for landing aircraft, J. Atmos. Ocean. Tech., 30 (2013), 2808-2819.  doi: 10.1175/JTECH-D-12-00186.1.  Google Scholar

[34]

E. KaiV. RossiJ. SudreH. WeirmerskirchC. LopezE. Hernandez-GarciaF. Marsac and V. Garcon, Top marine predators track Lagrangian coherent structures, Proc. Nat. Acad. Sci., 106 (2009), 8245-8250.  doi: 10.1073/pnas.0811034106.  Google Scholar

[35]

A. KamekeS. KastensS. RüttingerS. Herres-Pawlis and M. Schlüter, How coherent structures dominate the residence time in a bubble wake: An experimental example, Chem. Engrg. Sci., 207 (2019), 317-326.  doi: 10.1016/j.ces.2019.06.033.  Google Scholar

[36]

D. Karrasch and G. Haller, Do finite-size Lyapunov exponents detect coherent structures?, Chaos, 23 (2013), 11pp. doi: 10.1063/1.4837075.  Google Scholar

[37]

S. KeatingK. Smith and P. Kramer, Diagnosing lateral mixing in the upper ocean with virtual tracers: Spatial and temporal resolution dependence, J. Phys. Oceanography, 41 (2011), 1512-1534.  doi: 10.1175/2011JPO4580.1.  Google Scholar

[38]

P. E. Kloeden, E. Platen and H. Schurz, Numerical Solution of SDE Through Computer Experiments, Universitext, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-642-57913-4.  Google Scholar

[39]

T.-Y. Koh and B. Legras, Hyperbolic lines and the stratospheric polar vortex, Chaos, 12 (2002), 382-394.  doi: 10.1063/1.1480442.  Google Scholar

[40]

A. KumarS. Dwivedi and A. Pandey, Quantifying predictability of sea ice around the Indian Antarctic stations using coupled ocean sea ice model with shelf ice, Polar Sci., 18 (2018), 83-93.  doi: 10.1016/j.polar.2018.04.003.  Google Scholar

[41]

G. LacorataR. CorradoF. Falcini and R. Santoleri, FSLE analysis and validation of Lagrangian simulations based on satellite-derived GlobCurrent velocity data, Remote Sensing Environ., 221 (2019), 136-143.  doi: 10.1016/j.rse.2018.11.013.  Google Scholar

[42]

F. Lekien and S. D. Ross, The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds, Chaos, 20 (2010), 20pp. doi: 10.1063/1.3278516.  Google Scholar

[43]

S. Leung, An Eulerian approach for computing the finite time Lyapunov exponent, J. Comput. Phys., 230 (2011), 3500-3524.  doi: 10.1016/j.jcp.2011.01.046.  Google Scholar

[44]

D. Lipinski and K. Mohseni, A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures, Chaos, 20 (2010), 9pp. doi: 10.1063/1.3270049.  Google Scholar

[45]

K. May-Newman, V. Vu and B. Herold, Modeling the link between left ventricular flow and thromboembolic risk using Lagrangian coherent structures, Fluids, 1 (2016). doi: 10.3390/fluids1040038.  Google Scholar

[46]

P. Miron, J. Vétel and A. Garon, On the use of the finite-time Lyapunov exponent to reveal complex flow physics in the wake of a mechanical valve, Exp. Fluids, 55 (2014). doi: 10.1007/s00348-014-1814-5.  Google Scholar

[47]

D. A. Nelson and G. B. Jacobs, DG-FTLE: Lagrangian coherent structures with high-order discontinuous Galerkin methods, J. Comput. Phys., 295 (2015), 65-86.  doi: 10.1016/j.jcp.2015.03.040.  Google Scholar

[48]

Y.-K. Ng and S. Leung, Estimating the finite-time Lyapunov exponent from sparse Lagrangian trajectories, Commun. Comput. Phys., 26 (2019), 1143-1177.  doi: 10.4208/cicp.OA-2018-0149.  Google Scholar

[49]

G. Norgard and P.-T. Bremmer, Second derivative ridges are straight lines and the implications for computing Lagrangian Coherent Structures, Phys. D, 241 (2012), 1475-1476.  doi: 10.1016/j.physd.2012.05.006.  Google Scholar

[50]

B. Øksendahl, Stochastic Differential Equations, Universitext, Springer-Verlag, Berlin, 1995. doi: 10.1007/978-3-662-03185-8.  Google Scholar

[51]

A. B. Olcay, T. S. Pottebaum and P. S. Krueger, Sensitivity of Lagrangian coherent structure identification to flow field resolution and random errors, Chaos, 20 (2010), 10pp. doi: 10.1063/1.3276062.  Google Scholar

[52]

T. Peacock and J. Dabiri, Introduction to focus issue: Lagrangian coherent structures, Chaos, 20 (2010). doi: 10.1063/1.3278173.  Google Scholar

[53]

A. PojeA. HazaT. ÖzgökmenM. Magaldi and Z. Garrafo, Resolution dependent relative dispersion statistics in a hierarchy of ocean models, Ocean Model., 31 (2010), 36-50.  doi: 10.1016/j.ocemod.2009.09.002.  Google Scholar

[54]

M. Rockwood, T. Loiselle and M. Green, Practical concerns of implementing a finite-time Lyapunov exponent analysis with under-resolved data, Exp. Fluids, 60 (2019). doi: 10.1007/s00348-018-2658-1.  Google Scholar

[55]

M. RudkoI. Kamenkovich and D. Nolan, Stability of baroclinic vortices on the $\beta$ plane and implications for transport, J. Phys. Oceanography, 46 (2016), 3245-3262.  doi: 10.1175/JPO-D-16-0067.1.  Google Scholar

[56]

R. Samelson, Lagrangian motion, coherent structures, and lines of persistent material strain, Annu. Rev. Mar. Sci., 5 (2013), 137-163.  doi: 10.1146/annurev-marine-120710-100819.  Google Scholar

[57]

R. Sampath, M. Mathur and S. Chakravarthy, Lagrangian coherent structures during combustion instability in a premixed-flame backward-step combustor, Phys. Rev. E, 94 (2016). doi: 10.1103/PhysRevE.94.062209.  Google Scholar

[58]

B. SandstedeS. BalasuriyaC. K. R. T. Jones and P. Miller, Melnikov theory for finite-time vector fields, Nonlinearity, 13 (2000), 1357-1377.  doi: 10.1088/0951-7715/13/4/321.  Google Scholar

[59]

K. ScalesE. HazenM. JacoxF. Castruccio and S. Bograd, Fisheries bycatch risk to marine megafauna is intensified in Lagrangian coherent structures, Proc. Nat. Acad. Sci., 115 (2018), 7362-7367.  doi: 10.1073/pnas.1801270115.  Google Scholar

[60]

B. Schindler, R. Peikert, R. Fuchs and H. Theisl, Ridge concepts for the visualization of Lagrangian coherent structures, in Topological Methods in Data Analysis and Visualization II, Math. Vis., Springer, Heidelberg, 2012,221–236. doi: 10.1007/978-3-642-23175-9_15.  Google Scholar

[61]

C. Senatore and S. Ross, Detection and characterization of transport barriers in complex flows via ridge extraction of the finite time Lyapunov exponent field, Internat. J. Numer. Methods Engrg., 86 (2011), 1163-1174.  doi: 10.1002/nme.3101.  Google Scholar

[62]

S. Shadden, Lagrangian coherent structures, in Transport and Mixing in Laminar Flows: From Microfluidics to Oceanic Currents, Wiley, 2011. doi: 10.1002/9783527639748.ch3.  Google Scholar

[63]

S. C. ShaddenF. Lekien and J. E. Marsden, Definition and properties of Lagrangian coherent structures from Lyapunov exponents in two-dimensional aperiodic flows, Phys. D, 212 (2005), 271-304.  doi: 10.1016/j.physd.2005.10.007.  Google Scholar

[64]

E. Shuckburgh, Mapping unstable manifolds using drifters/floats in a Southern Ocean field campaign, in Numerical Analysis and Applied Mathematics, AIP Conference Proceedings, 1479, AIP, 2012,650–653. doi: 10.1063/1.4756218.  Google Scholar

[65]

K. G. D. Sulalitha Priyankara, S. Balasuriya and E. Bollt, Quantifying the role of folding in nonautonomous flows: The unsteady double-gyre, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 19pp. doi: 10.1142/S0218127417501565.  Google Scholar

[66]

P. Tallagragada and S. D. Ross, A set oriented definition of finite-time Lyapunov exponents and coherent sets, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 1106-1126.  doi: 10.1016/j.cnsns.2012.09.017.  Google Scholar

[67]

W. TangP. Chan and G. Haller, Lagrangian coherent structure analysis of terminal winds detected by LIDAR. Part 1: Turbulent structures, J. Appl. Meteor. Climatol., 50 (2011), 325-338.  doi: 10.1175/2010JAMC2508.1.  Google Scholar

[68]

J.-L. Thiffeault and A. H. Boozer, Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions, Chaos, 11 (2001), 16-28.  doi: 10.1063/1.1342079.  Google Scholar

[69]

G. You and S. Leung, An improved Eulerian approach for the finite time Lyapunov exponent, J. Sci. Comput., 76 (2018), 1407-1435.  doi: 10.1007/s10915-018-0669-y.  Google Scholar

[70]

M. ZhangH. ChenQ. WuX. LiL. Xiang and G. Wang, Experimental and numerical investigation of cavitating vortical patterns around a Tulin hydrofoil, Ocean Engrg., 173 (2019), 298-307.  doi: 10.1016/j.oceaneng.2018.12.064.  Google Scholar

Figure 1.  Double-gyre computations with $ L_r = 0.005 $ and $ v_r = 2 \times 10^{-5} $: (a) FTLE field $ \Lambda $, and (b) the error field $ {\mathcal E} $
Figure 2.  As in Fig. 1, but with $ L_r = 0.05 $ and $ v_r = 0.002 $
Figure 3.  (a, b, c) Three (of the $ 100,000 $) sample FTLE fields, and (d) the mean FTLE field, computed when using stochastic simulation of (6) for the double-gyre system with $ L_r = 0.05 $ and $ v_r = 0.002 $
Figure 4.  (a) The standard deviation of the FTLE fields computed from the $ 100,000 $ stochastic simulations, and (b) the theoretical error field (the same as Fig. 2(b), but scaled to elucidate variation at values of FTLE comparable to (a))
Figure 5.  The probability density of the FTLE value from the stochastic simulations of the double-gyre at two selected points indicated in Figs. 4(a) and 3(d): (a) maximum standard-deviation point (at red 'x'), and (b) minimum standard deviation point (at red circle)
Figure 6.  The probability density of the FTLE value from the stochastic simulations of the double-gyre with $ L_r = 0.05 $ and $ v_r = 0.002 $; the red star is the value from the standard FTLE computation: (a) at $ (1.05,0.1) $ and (b) at $ (1.15,0.1) $
Figure 7.  Wobbly Duffing from from $ t_0 = 4 $ with time-of-flow $ T = 4 $, with $ L_r = 0.2 $ and $ v_r = 0.002 $: (a) FTLE field, and (b) FTLE error field
Figure 8.  Scatter plots of the theoretical error with (left) the standard deviation, and (right) the range, obtained from $ 1000 $ stochastic simulations. Each point (red circle) in the plot corresponds to a point in the spatial domain at time $ t_0 $, and the blue line is a linear fit. The values chosen are (top) $ L_r = 0.2 $ and $ v_r = 0.002 $, and (bottom) $ L_r = 0.05 $ and $ v_r = 0.00002 $
Figure 9.  The $ v_r $ dependence analyzed for the theoretical and stochastically-determined errors in the FTLE field, for the wobbly Duffing system with $ L_r = 0.2 $: (a) theoretical (red-solid), standard deviation (green-dashed) and range (blue-dot-dashed) norms, and (b-d) investigations on the dependence of $ v_r $ on the FTLE spreading measures $ \| {\mathrm{theory}} \| $, $ \| {\mathrm{std}} \| $ and $ \| {\mathrm{range}} \| $ respectively
Figure 10.  The $ L_r $ dependence analyzed for the theoretical and stochastically-determined errors in the FTLE field, for the wobbly Duffing system with $ v_r = 0.00002 $: (a) theoretical (red-solid), standard deviation (green-dashed) and range (blue-dot-dashed) norms, and (b-d) investigations on the dependence of $ v_r $ on the FTLE spreading measures $ \| {\mathrm{theory}} \| $, $ \| {\mathrm{std}} \| $ and $ \| {\mathrm{range}} \| $ respectively
Figure 11.  FTLE fields (left) and FTLE error fields (right) for several situations based on the Copernicus data: (top) from 30 January 2016 to 29 February 2016 (middle) 25 February 2011 to 26 April 2011, and (bottom) 25 February 2011 to 13 September 2011
[1]

Peter Giesl. Construction of a finite-time Lyapunov function by meshless collocation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2387-2412. doi: 10.3934/dcdsb.2012.17.2387

[2]

Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023

[3]

Daniel Karrasch, Mohammad Farazmand, George Haller. Attraction-based computation of hyperbolic Lagrangian coherent structures. Journal of Computational Dynamics, 2015, 2 (1) : 83-93. doi: 10.3934/jcd.2015.2.83

[4]

Arno Berger. On finite-time hyperbolicity. Communications on Pure & Applied Analysis, 2011, 10 (3) : 963-981. doi: 10.3934/cpaa.2011.10.963

[5]

Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 841-857. doi: 10.3934/dcdsb.2019192

[6]

Arno Berger, Doan Thai Son, Stefan Siegmund. Nonautonomous finite-time dynamics. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 463-492. doi: 10.3934/dcdsb.2008.9.463

[7]

Fatiha Alabau-Boussouira, Vincent Perrollaz, Lionel Rosier. Finite-time stabilization of a network of strings. Mathematical Control & Related Fields, 2015, 5 (4) : 721-742. doi: 10.3934/mcrf.2015.5.721

[8]

Jianjun Paul Tian. Finite-time perturbations of dynamical systems and applications to tumor therapy. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 469-479. doi: 10.3934/dcdsb.2009.12.469

[9]

Shu Dai, Dong Li, Kun Zhao. Finite-time quenching of competing species with constrained boundary evaporation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1275-1290. doi: 10.3934/dcdsb.2013.18.1275

[10]

Grzegorz Karch, Kanako Suzuki, Jacek Zienkiewicz. Finite-time blowup of solutions to some activator-inhibitor systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4997-5010. doi: 10.3934/dcds.2016016

[11]

Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050

[12]

Emilija Bernackaitė, Jonas Šiaulys. The finite-time ruin probability for an inhomogeneous renewal risk model. Journal of Industrial & Management Optimization, 2017, 13 (1) : 207-222. doi: 10.3934/jimo.2016012

[13]

Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115

[14]

Gang Tian. Finite-time singularity of Kähler-Ricci flow. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1137-1150. doi: 10.3934/dcds.2010.28.1137

[15]

Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020248

[16]

Juanjuan Huang, Yan Zhou, Xuerong Shi, Zuolei Wang. A single finite-time synchronization scheme of time-delay chaotic system with external periodic disturbance. Mathematical Foundations of Computing, 2019, 2 (4) : 333-346. doi: 10.3934/mfc.2019021

[17]

Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91

[18]

Edson de Faria, Pablo Guarino. Real bounds and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1957-1982. doi: 10.3934/dcds.2016.36.1957

[19]

Zoltán Buczolich, Gabriella Keszthelyi. Isentropes and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2020, 40 (4) : 1989-2009. doi: 10.3934/dcds.2020102

[20]

Sebastian J. Schreiber. Expansion rates and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 433-438. doi: 10.3934/dcds.1997.3.433

 Impact Factor: 

Metrics

  • PDF downloads (110)
  • HTML views (123)
  • Cited by (0)

Other articles
by authors

[Back to Top]