-
Previous Article
A self-consistent dynamical system with multiple absolutely continuous invariant measures
- JCD Home
- This Issue
- Next Article
Homogeneous darboux polynomials and generalising integrable ODE systems
Department of Mathematics and Statistics, La Trobe University, Victoria 3086, Australia |
We show that any system of ODEs can be modified whilst preserving its homogeneous Darboux polynomials. We employ the result to generalise a hierarchy of integrable Lotka-Volterra systems.
References:
[1] |
D.W. Albrecht, E.L. Mansfield and A.E. Milne,
Algorithms for special integrals of ordinary differential equations, J. Phys. A: Math. Gen., 29 (1996), 973-991.
doi: 10.1088/0305-4470/29/5/013. |
[2] |
O. I. Bogoyavlenskij,
Integrable Lotka-Volterra systems, Regul. Chaotic Dyn., 13 (2008), 543-556.
doi: 10.1134/S1560354708060051. |
[3] |
E. Celledoni, C. Evripidou, D. I. McLaren, B. Owren, G. R. W. Quispel, B. K. Tapley and P. H. van der Kamp, Using discrete Darboux polynomials to detect and determine preserved measures and integrals of rational maps, J. Phys. A: Math. Theor., 52 (2019), 11 pp.
doi: 10.1088/1751-8121/ab294b. |
[4] |
H. Christodoulidi, A. N. W. Hone and T. E. Kouloukas,
A new class of integrable Lotka-Volterra systems, J. Comput. Dyn., 6 (2019), 223-237.
doi: 10.3934/jcd.2019011. |
[5] |
C. B. Collins,
Algebraic conditions for a centre or a focus in some simple systems of arbitrary degree, J. Math. Anal. Appl., 195 (1995), 719-735.
doi: 10.1006/jmaa.1995.1385. |
[6] |
C. Evripidou, P. Kassotakis and P. Vanhaecke,
Integrable reductions of the dressing chain, J. Comput. Dyn., 6 (2019), 277-306.
doi: 10.3934/jcd.2019014. |
[7] |
A. Goriely, Integrability and Nonintegrability of Dynamical Systems, World Scientific, 2001.
doi: 10.1142/9789812811943. |
[8] |
T. E. Kouloukas, G. R. W. Quispel and P. Vanhaecke, Liouville integrability and superintegrability of a generalized Lotka-Volterra system and its Kahan discretization, J. Phys. A, 49 (2016), 13 pp.
doi: 10.1088/1751-8113/49/22/225201. |
[9] |
D. T. Tran, Complete Integrability of Maps Obtained as Reductions of Integrable Lattice Equations, Ph.D thesis, La Trobe University, Australia, 2011. |
[10] |
P. H. van der Kamp, T. E. Kouloukas, G. R. W. Quispel, D. T. Tran and P. Vanhaecke, Integrable and superintegrable systems associated with multi-sums of products, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20140481.
doi: 10.1098/rspa.2014.0481. |
show all references
References:
[1] |
D.W. Albrecht, E.L. Mansfield and A.E. Milne,
Algorithms for special integrals of ordinary differential equations, J. Phys. A: Math. Gen., 29 (1996), 973-991.
doi: 10.1088/0305-4470/29/5/013. |
[2] |
O. I. Bogoyavlenskij,
Integrable Lotka-Volterra systems, Regul. Chaotic Dyn., 13 (2008), 543-556.
doi: 10.1134/S1560354708060051. |
[3] |
E. Celledoni, C. Evripidou, D. I. McLaren, B. Owren, G. R. W. Quispel, B. K. Tapley and P. H. van der Kamp, Using discrete Darboux polynomials to detect and determine preserved measures and integrals of rational maps, J. Phys. A: Math. Theor., 52 (2019), 11 pp.
doi: 10.1088/1751-8121/ab294b. |
[4] |
H. Christodoulidi, A. N. W. Hone and T. E. Kouloukas,
A new class of integrable Lotka-Volterra systems, J. Comput. Dyn., 6 (2019), 223-237.
doi: 10.3934/jcd.2019011. |
[5] |
C. B. Collins,
Algebraic conditions for a centre or a focus in some simple systems of arbitrary degree, J. Math. Anal. Appl., 195 (1995), 719-735.
doi: 10.1006/jmaa.1995.1385. |
[6] |
C. Evripidou, P. Kassotakis and P. Vanhaecke,
Integrable reductions of the dressing chain, J. Comput. Dyn., 6 (2019), 277-306.
doi: 10.3934/jcd.2019014. |
[7] |
A. Goriely, Integrability and Nonintegrability of Dynamical Systems, World Scientific, 2001.
doi: 10.1142/9789812811943. |
[8] |
T. E. Kouloukas, G. R. W. Quispel and P. Vanhaecke, Liouville integrability and superintegrability of a generalized Lotka-Volterra system and its Kahan discretization, J. Phys. A, 49 (2016), 13 pp.
doi: 10.1088/1751-8113/49/22/225201. |
[9] |
D. T. Tran, Complete Integrability of Maps Obtained as Reductions of Integrable Lattice Equations, Ph.D thesis, La Trobe University, Australia, 2011. |
[10] |
P. H. van der Kamp, T. E. Kouloukas, G. R. W. Quispel, D. T. Tran and P. Vanhaecke, Integrable and superintegrable systems associated with multi-sums of products, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20140481.
doi: 10.1098/rspa.2014.0481. |
[1] |
Cheng-Hsiung Hsu, Ting-Hui Yang. Traveling plane wave solutions of delayed lattice differential systems in competitive Lotka-Volterra type. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 111-128. doi: 10.3934/dcdsb.2010.14.111 |
[2] |
Tongren Ding, Hai Huang, Fabio Zanolin. A priori bounds and periodic solutions for a class of planar systems with applications to Lotka-Volterra equations. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 103-117. doi: 10.3934/dcds.1995.1.103 |
[3] |
Shaohua Chen, Runzhang Xu, Hongtao Yang. Global and blowup solutions for general Lotka-Volterra systems. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1757-1768. doi: 10.3934/cpaa.2016012 |
[4] |
Suqing Lin, Zhengyi Lu. Permanence for two-species Lotka-Volterra systems with delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 137-144. doi: 10.3934/mbe.2006.3.137 |
[5] |
Bang-Sheng Han, Zhi-Cheng Wang, Zengji Du. Traveling waves for nonlocal Lotka-Volterra competition systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1959-1983. doi: 10.3934/dcdsb.2020011 |
[6] |
Guichen Lu, Zhengyi Lu. Permanence for two-species Lotka-Volterra cooperative systems with delays. Mathematical Biosciences & Engineering, 2008, 5 (3) : 477-484. doi: 10.3934/mbe.2008.5.477 |
[7] |
Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043 |
[8] |
Guo Lin, Wan-Tong Li, Shigui Ruan. Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 1-23. doi: 10.3934/dcds.2011.31.1 |
[9] |
Dejun Fan, Xiaoyu Yi, Ling Xia, Jingliang Lv. Dynamical behaviors of stochastic type K monotone Lotka-Volterra systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2901-2922. doi: 10.3934/dcdsb.2018291 |
[10] |
Meng Liu, Ke Wang. Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2495-2522. doi: 10.3934/dcds.2013.33.2495 |
[11] |
Mats Gyllenberg, Ping Yan. On the number of limit cycles for three dimensional Lotka-Volterra systems. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 347-352. doi: 10.3934/dcdsb.2009.11.347 |
[12] |
Juan Luis García Guirao, Marek Lampart. Transitivity of a Lotka-Volterra map. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 75-82. doi: 10.3934/dcdsb.2008.9.75 |
[13] |
Xiao He, Sining Zheng. Protection zone in a modified Lotka-Volterra model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2027-2038. doi: 10.3934/dcdsb.2015.20.2027 |
[14] |
Chiun-Chuan Chen, Yin-Liang Huang, Li-Chang Hung, Chang-Hong Wu. Semi-exact solutions and pulsating fronts for Lotka-Volterra systems of two competing species in spatially periodic habitats. Communications on Pure and Applied Analysis, 2020, 19 (1) : 1-18. doi: 10.3934/cpaa.2020001 |
[15] |
Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537 |
[16] |
Yoshiaki Muroya, Teresa Faria. Attractivity of saturated equilibria for Lotka-Volterra systems with infinite delays and feedback controls. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3089-3114. doi: 10.3934/dcdsb.2018302 |
[17] |
Norimichi Hirano, Wieslaw Krawcewicz, Haibo Ruan. Existence of nonstationary periodic solutions for $\Gamma$-symmetric Lotka-Volterra type systems. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 709-735. doi: 10.3934/dcds.2011.30.709 |
[18] |
C. M. Evans, G. L. Findley. Analytic solutions to a class of two-dimensional Lotka-Volterra dynamical systems. Conference Publications, 2001, 2001 (Special) : 137-142. doi: 10.3934/proc.2001.2001.137 |
[19] |
Dan Li, Jing'an Cui, Yan Zhang. Permanence and extinction of non-autonomous Lotka-Volterra facultative systems with jump-diffusion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2069-2088. doi: 10.3934/dcdsb.2015.20.2069 |
[20] |
Zhi-Cheng Wang, Hui-Ling Niu, Shigui Ruan. On the existence of axisymmetric traveling fronts in Lotka-Volterra competition-diffusion systems in ℝ3. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1111-1144. doi: 10.3934/dcdsb.2017055 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]