January  2021, 8(1): 1-8. doi: 10.3934/jcd.2021001

Homogeneous darboux polynomials and generalising integrable ODE systems

Department of Mathematics and Statistics, La Trobe University, Victoria 3086, Australia

* Corresponding author: Peter H. van der Kamp

Received  February 2020 Revised  May 2020 Published  August 2020

We show that any system of ODEs can be modified whilst preserving its homogeneous Darboux polynomials. We employ the result to generalise a hierarchy of integrable Lotka-Volterra systems.

Citation: Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001
References:
[1]

D.W. AlbrechtE.L. Mansfield and A.E. Milne, Algorithms for special integrals of ordinary differential equations, J. Phys. A: Math. Gen., 29 (1996), 973-991.  doi: 10.1088/0305-4470/29/5/013.  Google Scholar

[2]

O. I. Bogoyavlenskij, Integrable Lotka-Volterra systems, Regul. Chaotic Dyn., 13 (2008), 543-556.  doi: 10.1134/S1560354708060051.  Google Scholar

[3]

E. Celledoni, C. Evripidou, D. I. McLaren, B. Owren, G. R. W. Quispel, B. K. Tapley and P. H. van der Kamp, Using discrete Darboux polynomials to detect and determine preserved measures and integrals of rational maps, J. Phys. A: Math. Theor., 52 (2019), 11 pp. doi: 10.1088/1751-8121/ab294b.  Google Scholar

[4]

H. ChristodoulidiA. N. W. Hone and T. E. Kouloukas, A new class of integrable Lotka-Volterra systems, J. Comput. Dyn., 6 (2019), 223-237.  doi: 10.3934/jcd.2019011.  Google Scholar

[5]

C. B. Collins, Algebraic conditions for a centre or a focus in some simple systems of arbitrary degree, J. Math. Anal. Appl., 195 (1995), 719-735.  doi: 10.1006/jmaa.1995.1385.  Google Scholar

[6]

C. EvripidouP. Kassotakis and P. Vanhaecke, Integrable reductions of the dressing chain, J. Comput. Dyn., 6 (2019), 277-306.  doi: 10.3934/jcd.2019014.  Google Scholar

[7]

A. Goriely, Integrability and Nonintegrability of Dynamical Systems, World Scientific, 2001. doi: 10.1142/9789812811943.  Google Scholar

[8]

T. E. Kouloukas, G. R. W. Quispel and P. Vanhaecke, Liouville integrability and superintegrability of a generalized Lotka-Volterra system and its Kahan discretization, J. Phys. A, 49 (2016), 13 pp. doi: 10.1088/1751-8113/49/22/225201.  Google Scholar

[9]

D. T. Tran, Complete Integrability of Maps Obtained as Reductions of Integrable Lattice Equations, Ph.D thesis, La Trobe University, Australia, 2011. Google Scholar

[10]

P. H. van der Kamp, T. E. Kouloukas, G. R. W. Quispel, D. T. Tran and P. Vanhaecke, Integrable and superintegrable systems associated with multi-sums of products, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20140481. doi: 10.1098/rspa.2014.0481.  Google Scholar

show all references

References:
[1]

D.W. AlbrechtE.L. Mansfield and A.E. Milne, Algorithms for special integrals of ordinary differential equations, J. Phys. A: Math. Gen., 29 (1996), 973-991.  doi: 10.1088/0305-4470/29/5/013.  Google Scholar

[2]

O. I. Bogoyavlenskij, Integrable Lotka-Volterra systems, Regul. Chaotic Dyn., 13 (2008), 543-556.  doi: 10.1134/S1560354708060051.  Google Scholar

[3]

E. Celledoni, C. Evripidou, D. I. McLaren, B. Owren, G. R. W. Quispel, B. K. Tapley and P. H. van der Kamp, Using discrete Darboux polynomials to detect and determine preserved measures and integrals of rational maps, J. Phys. A: Math. Theor., 52 (2019), 11 pp. doi: 10.1088/1751-8121/ab294b.  Google Scholar

[4]

H. ChristodoulidiA. N. W. Hone and T. E. Kouloukas, A new class of integrable Lotka-Volterra systems, J. Comput. Dyn., 6 (2019), 223-237.  doi: 10.3934/jcd.2019011.  Google Scholar

[5]

C. B. Collins, Algebraic conditions for a centre or a focus in some simple systems of arbitrary degree, J. Math. Anal. Appl., 195 (1995), 719-735.  doi: 10.1006/jmaa.1995.1385.  Google Scholar

[6]

C. EvripidouP. Kassotakis and P. Vanhaecke, Integrable reductions of the dressing chain, J. Comput. Dyn., 6 (2019), 277-306.  doi: 10.3934/jcd.2019014.  Google Scholar

[7]

A. Goriely, Integrability and Nonintegrability of Dynamical Systems, World Scientific, 2001. doi: 10.1142/9789812811943.  Google Scholar

[8]

T. E. Kouloukas, G. R. W. Quispel and P. Vanhaecke, Liouville integrability and superintegrability of a generalized Lotka-Volterra system and its Kahan discretization, J. Phys. A, 49 (2016), 13 pp. doi: 10.1088/1751-8113/49/22/225201.  Google Scholar

[9]

D. T. Tran, Complete Integrability of Maps Obtained as Reductions of Integrable Lattice Equations, Ph.D thesis, La Trobe University, Australia, 2011. Google Scholar

[10]

P. H. van der Kamp, T. E. Kouloukas, G. R. W. Quispel, D. T. Tran and P. Vanhaecke, Integrable and superintegrable systems associated with multi-sums of products, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20140481. doi: 10.1098/rspa.2014.0481.  Google Scholar

[1]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[2]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[3]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[4]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[5]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[6]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[7]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[8]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[9]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[10]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[11]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[12]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[13]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[14]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[15]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[16]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[17]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[18]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[19]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[20]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

 Impact Factor: 

Metrics

  • PDF downloads (94)
  • HTML views (254)
  • Cited by (0)

[Back to Top]