[1]
|
M. Althoff, Reachability Analysis and its Application to the Safety Assessment of Autonomous Cars, PhD thesis, Fakultät für Elektrotechnik und Informationstechnik, Technische Universität München, Munich, Germany, 2010, URL http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20100715-963752-1-4.
|
[2]
|
J.-P. Aubin, A. M. Bayen and P. Saint-Pierre, Viability Theory. New Directions, 2nd edition, Springer, Heidelberg, 2011, First edition: J.-P. Aubin in Systems & Control: Foundations & Applications, Birkhäuser Boston Inc., Boston, MA, 2009.
doi: 10.1007/978-3-642-16684-6.
|
[3]
|
J.-P. Aubin, T. Bernado and P. Saint-Pierre, A viability approach to global climate change issues, in The Coupling of Climate and Economic Dynamics. Essays on Integrated Assessment (eds. A. Haurie and L. Viguier), vol. 22 of Advances in Global Change Research, Springer, Dordrecht–Berlin–Heidelberg–New York, 2005,113–143.
doi: 10.1007/1-4020-3425-3_5.
|
[4]
|
J.-P. Aubin and A. Désilles, Traffic Networks as Information Systems. A Viability Approach, Mathematical Engineering, Springer-Verlag, Berlin, 2017.
doi: 10.1007/978-3-642-54771-3.
|
[5]
|
R. Baier, I. A. Chahma and F. Lempio, Stability and convergence of Euler's method for stateconstrained differential inclusions, Special issue on “Variational Analysis and Optimization”, D. Dentcheva, J. Revalski (eds.), SIAM J. Optim., 18 (2007), 1004-1026.
doi: 10.1137/060661867.
|
[6]
|
R. Baier and M. Gerdts, A computational method for non-convex reachable sets using optimal control, in Proceedings of the European Control Conference (ECC) 2009, Budapest (Hungary), August 23–26, 2009, European Union Control Association (EUCA), Budapest, 2009, 97-102, URL http://ieeexplore.ieee.org/document/7074386/.
doi: 10.23919/ECC.2009.7074386.
|
[7]
|
R. Baier, M. Gerdts and I. Xausa, Approximation of reachable sets using optimal control algorithms, Numer. Algebra Control Optim., 3 (2013), 519-548.
doi: 10.3934/naco.2013.3.519.
|
[8]
|
M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, with appendices by M. Falcone and P. Soravia, Systems & Control: Foundations & Applications, Birkhäuser Boston Inc., Boston, MA, 1997.
doi: 10.1007/978-0-8176-4755-1.
|
[9]
|
W.-J. Beyn and J. Rieger, Numerical fixed grid methods for differential inclusions, Computing, 81 (2007), 91-106.
doi: 10.1007/s00607-007-0240-4.
|
[10]
|
W.-J. Beyn and J. Rieger, The implicit Euler scheme for one-sided Lipschitz differential inclusions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 409-428.
doi: 10.3934/dcdsb.2010.14.409.
|
[11]
|
M. Bodenschatz, Berechnung erreichbarer Mengen mit globalen Optimierungsverfahren [Calculation of Reachable Sets Using Global Optimization Methods], Diploma thesis, Department of Mathematics, University of Bayreuth, Bayreuth, Germany, 2014, URL http://num.math.uni-bayreuth.de/en/thesis/2014/Bodenschatz_Michael/.
|
[12]
|
O. Bokanowski, E. Bourgeois, A. Désilles and H. Zidani, HJBapproach for a multi-boost launcher trajectory optimization problem, in IFAC Proc., vol. 49-17, 20th IFAC Symposium on Automatic Control in Aerospace – ACA 2016, Aug 2016, Sherbrooke, Quebec, Canada., 2016,456–461.
|
[13]
|
C. Büskens and D. Wassel, The ESA NLP solver WORHP, in Modeling and Optimization in Space Engineering, vol. 73 of Springer Optim. Appl., Springer, New York, 2013, 85–110.
doi: 10.1007/978-1-4614-4469-5_4.
|
[14]
|
I. A. Chahma, Set-valued discrete approximation of state-constrained differential inclusions, Bayreuth. Math. Schr., 67 (2003), 3-161.
|
[15]
|
C. M. Chilan and B. A. Conway, A reachable set analysis method for generating near-optimal trajectories of constrained multiphase systems, J. Optim. Theory Appl., 167 (2015), 161-194.
doi: 10.1007/s10957-014-0651-2.
|
[16]
|
J. L. Davy, Properties of the solution set of a generalized differential equation, Bull. Austral. Math. Soc., 6 (1972), 379-398.
doi: 10.1017/S0004972700044646.
|
[17]
|
M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors, Numer. Math., 75 (1997), 293-317.
doi: 10.1007/s002110050240.
|
[18]
|
M. Dellnitz, A. Hohmann, O. Junge and M. Rumpf, Exploring invariant sets and invariant measures, Chaos, 7 (1997), 221-228.
doi: 10.1063/1.166223.
|
[19]
|
M. Dellnitz, O. Junge, M. Post and B. Thiere, On target for Venus – set oriented computation of energy efficient low thrust trajectories, Celestial Mech. Dynam. Astronom., 95 (2006), 357-370.
doi: 10.1007/s10569-006-9008-y.
|
[20]
|
A. Désilles, H. Zidani and E. Crück, Collision analysis for an UAV, in AIAA Guidance, Navigation, and Control Conference 2012 (GNC-12), 13–16 August 2012 in Minneapolis, Minnesota, American Institute of Aeronautics and Astronautics, 2012, 23 pages, URL http://arc.aiaa.org/doi/book/10.2514/MGNC12.
|
[21]
|
T. Donchev and E. Farkhi, Stability and Euler approximation of one-sided Lipschitz differential inclusions, SIAM J. Control Optim., 36 (1998), 780–796 (electronic).
doi: 10.1137/S0363012995293694.
|
[22]
|
A. L. Dontchev and E. M. Farkhi, Error estimates for discretized differential inclusions, Computing, 41 (1989), 349-358.
doi: 10.1007/BF02241223.
|
[23]
|
A. L. Dontchev and F. Lempio, Difference methods for differential inclusions: A survey, SIAM Rev., 34 (1992), 263-294.
doi: 10.1137/1034050.
|
[24]
|
M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations, vol. 133 of Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), 2014.
|
[25]
|
H. Frankowska and F. Rampazzo, Filippov's and Filippov-Ważewski's theorems on closed domains, J. Differ. Equ., 161 (2000), 449-478.
doi: 10.1006/jdeq.2000.3711.
|
[26]
|
M. Gerdts, OCPID-DAE1 – Optimal Control and Parameter Identification with Differential-Algebraic Equations of Index 1, 2013, URL http://www.optimal-control.de/.
|
[27]
|
M. Gerdts and M. Kunkel, A nonsmooth Newton's method for discretized optimal control problems with state and control constraints, J. Ind. Manag. Optim., 4 (2008), 247-270.
doi: 10.3934/jimo.2008.4.247.
|
[28]
|
L. Grüne, Asymptotic Behavior of Dynamical and Control Systems under Perturbation and Discretization, vol. 1783 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2002.
doi: 10.1007/b83677.
|
[29]
|
L. Grüne and T. Jahn, Computing reachable sets via barrier methods on SIMD architectures, in Proceedings of the 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012) Held at the University of Vienna, Vienna, Austria, September 10–14, 2012 (eds. J. Eberhardsteiner, H. J. Böhm and F. G. Rammerstorfer), Vienna University of Technology, Vienna, Austria, 2012, 2076–2095, URL http://www.eccomas.org/spacehome/1/7/, Paper No. 1518, e-book.
|
[30]
|
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31 of Springer Series in Computational Mathematics, 2nd edition, Springer-Verlag, Berlin, 2006, URL http://rd.springer.com/book/10.1007/3-540-30666-8.
|
[31]
|
J. D. Hunter, Matplotlib: A 2d graphics environment, Computing In Science & Engineering, 9 (2007), 90-95.
|
[32]
|
T. U. Jahn, A Feasibility Problem Approach for Reachable Set Approximation, PhD thesis, Fakultät für Mathematik, Physik und Informatik, Bayreuth, Germany, 2014, URL http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:bvb:703-epub-2087-4.
|
[33]
|
O. Junge, Mengenorientierte Methoden zur numerischen Analyse dynamischer Systeme, PhD thesis, University of Paderborn, 2000, URL http://www.shaker.de/de/content/catalogue/index.asp?lang=de&ID=8&ISBN=978-3-8265-7081-0.
|
[34]
|
I. M. Mitchell, A. M. Bayen and C. J. Tomlin, A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games, IEEE Trans. Automat. Control, 50 (2005), 947-957.
doi: 10.1109/TAC.2005.851439.
|
[35]
|
I. M. Mitchell and C. J. Tomlin, Overapproximating reachable sets by Hamilton-Jacobi projections, Special issue in honor of the sixtieth birthday of Stanley Osher, J. Sci. Comput., 19 (2003), 323-346.
doi: 10.1023/A:1025364227563.
|
[36]
|
Persistence of Vision Pty. Ltd., Persistence of Vision Raytracer (Version 3.7). Computer Software, retrieved from http://www.povray.org/download/, 2004.
|
[37]
|
M. Rasmussen, J. Rieger and K. N. Webster, Approximation of reachable sets using optimal control and support vector machines, J. Comput. Appl. Math., 311 (2017), 68-83.
doi: 10.1016/j.cam.2016.06.015.
|
[38]
|
G. Reiéig, Computing abstractions of nonlinear systems, IEEE Trans. Automat. Control, 56 (2011), 2583-2598.
doi: 10.1109/TAC.1980.1102455.
|
[39]
|
W. Riedl, Optimization-based subdivision algorithm for reachable sets, Proc. Appl. Math. Mech., 14 (2014), 937-938.
doi: 10.1002/pamm.201410449.
|
[40]
|
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, vol. 317 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3.
|
[41]
|
E. Roxin, Stability in general control systems, J. Differ. Equ., 1 (1965), 115-150.
doi: 10.1016/0022-0396(65)90015-X.
|
[42]
|
The Numerical Algorithms Group (NAG), The NAG Fortran Library, http://www.nag.com/.
|
[43]
|
V. Veliov, Second order discrete approximations to strongly convex differential inclusions, Systems Control Lett., 13 (1989), 263-269.
doi: 10.1016/0167-6911(89)90073-X.
|
[44]
|
A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program. Ser. A, 106 (2006), 25-57.
doi: 10.1007/s10107-004-0559-y.
|
[45]
|
P. R. Wolenski, The exponential formula for the reachable set of a Lipschitz differential inclusion, SIAM J. Control Optim., 28 (1990), 1148-1161.
doi: 10.1137/0328062.
|
[46]
|
I. Xausa, Verification of Collision Avoidance Systems using Optimal Control and Sensitivity Analysis, PhD thesis, Fakultät für Luft- und Raumfahrttechnik, Universität der Bundeswehr München, Munich, Germany, 2015, URL http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:706-4394.
|