
Computing Lyapunov functions using deep neural networks
Mathematical Institute, University of Bayreuth, 95440 Bayreuth, Germany |
We propose a deep neural network architecture and associated loss functions for a training algorithm for computing approximate Lyapunov functions of systems of nonlinear ordinary differential equations. Under the assumption that the system admits a compositional Lyapunov function, we prove that the number of neurons needed for an approximation of a Lyapunov function with fixed accuracy grows only polynomially in the state dimension, i.e., the proposed approach is able to overcome the curse of dimensionality. We show that nonlinear systems satisfying a small-gain condition admit compositional Lyapunov functions. Numerical examples in up to ten space dimensions illustrate the performance of the training scheme.
References:
[1] |
M. Abadi, A. Agarwal, P. Barham, E. Brevdo and Z. Chen, et al., TensorFlow: Large-scale machine learning on heterogeneous systems, 2015., Available from: https://www.tensorflow.org/. Google Scholar |
[2] |
M. Abu-Khalaf and F. L. Lewis,
Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach, Automatica J. IFAC, 41 (2005), 779-791.
doi: 10.1016/j.automatica.2004.11.034. |
[3] |
J. Anderson and A. Papachristodoulou,
Advances in computational Lyapunov analysis using sum-of-squares programming, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2361-2381.
doi: 10.3934/dcdsb.2015.20.2361. |
[4] |
J. Berner, P. Grohs and A. Jentzen,
Analysis of the generalization error: Empirical risk minimization over deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations, SIAM J. Math. Data Sci., 2 (2020), 631-657.
doi: 10.1137/19M125649X. |
[5] |
L. Bottou, Large-scale machine learning with stochastic gradient descent, in Proceedings of COMPSTAT'2010, Physica-Verlag/Springer, Heidelberg, 2010, 177-186.
doi: 10.1007/978-3-7908-2604-3_16. |
[6] |
L. Bottou, F. E. Curtis and J. Nocedal,
Optimization methods for large-scale machine learning, SIAM Rev., 60 (2018), 223-311.
doi: 10.1137/16M1080173. |
[7] |
F. Camilli, L. Grüne and F. Wirth, A regularization of Zubov's equation for robust domains of attraction, in Nonlinear Control in the Year 2000, Lect. Notes Control Inf. Sci., 258, NCN, Springer, London, 2001, 277-289.
doi: 10.1007/BFb0110220. |
[8] |
F. Camilli, L. Grüne and F. Wirth, Domains of attraction of interconnected systems: A Zubov method approach, European Control Conference (ECC), Budapest, Hungary, 2009.
doi: 10.23919/ECC.2009.7074385. |
[9] |
G. Cybenko,
Approximation by superpositions of a sigmoidal function, Math. Control Signals Systems, 2 (1989), 303-314.
doi: 10.1007/BF02551274. |
[10] |
J. Darbon, G. P. Langlois and T. Meng, Overcoming the curse of dimensionality for some Hamilton-Jacobi partial differential equations via neural network architectures, Res. Math. Sci., 7 (2020), 50pp.
doi: 10.1007/s40687-020-00215-6. |
[11] |
S. Dashkovskiy, H. Ito and F. Wirth,
On a small gain theorem for ISS networks in dissipative Lyapunov form, Eur. J. Control, 17 (2011), 357-365.
doi: 10.3166/ejc.17.357-365. |
[12] |
S. N. Dashkovskiy, B. S. Rüffer and F. R. Wirth,
Small gain theorems for large scale systems and construction of ISS Lyapunov functions, SIAM J. Control Optim., 48 (2010), 4089-4118.
doi: 10.1137/090746483. |
[13] |
W. E, J. Han and A. Jentzen,
Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations, Commun. Math. Stat., 5 (2017), 349-380.
doi: 10.1007/s40304-017-0117-6. |
[14] |
P. Giesl and S. Hafstein,
Computation of Lyapunov functions for nonlinear discrete time systems by linear programming, J. Difference Equ. Appl., 20 (2014), 610-640.
doi: 10.1080/10236198.2013.867341. |
[15] |
P. Giesl and S. Hafstein,
Review on computational methods for Lyapunov functions, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2291-2331.
doi: 10.3934/dcdsb.2015.20.2291. |
[16] |
P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions, Lecture Notes in Mathematics, 1904, Springer, Berlin, 2007.
doi: 10.1007/978-3-540-69909-5. |
[17] |
L. Grüne, Overcoming the curse of dimensionality for approximating Lyapunov functions with deep neural networks under a small-gain condition, preprint, arXiv: 2001.08423. Google Scholar |
[18] |
S. Hafstein, C. M. Kellett and H. Li, Continuous and piecewise affine Lyapunov functions using the Yoshizawa construction, American Control Conference, Portland, OR, 2014.
doi: 10.1109/ACC.2014.6858660. |
[19] |
S. F. Hafstein, An algorithm for constructing Lyapunov functions, Electronic Journal of Differential Equations, Monograph, 8, Texas State University-San Marcos, Department of Mathematics, San Marcos, TX, 2007, 100pp. |
[20] |
W. Hahn, Stability of Motion, Die Grundlehren der mathematischen Wissenschaften, 138, Springer-Verlag New York, Inc., New York, 1967.
doi: 10.1007/978-3-642-50085-5. |
[21] |
J. Han, A. Jentzen and W. E,
Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. USA, 115 (2018), 8505-8510.
doi: 10.1073/pnas.1718942115. |
[22] |
K. Hornik, M. Stinchcombe and H. White,
Multilayer feedforward networks are universal approximators, Neural Networks, 2 (1989), 359-366.
doi: 10.1016/0893-6080(89)90020-8. |
[23] |
C. Huré, H. Pham and X. Warin,
Deep backward schemes for high-dimensional nonlinear PDEs, Math. Comp., 89 (2020), 1547-1579.
doi: 10.1090/mcom/3514. |
[24] |
M. Hutzenthaler, A. Jentzen and T. Kruse, Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities, preprint, arXiv: 1912.02571. Google Scholar |
[25] |
M. Hutzenthaler, A. Jentzen, T. Kruse and T. A. Nguyen, A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations, SN Partial Differ. Equ. Appl., 10 (2020).
doi: 10.1007/s42985-019-0006-9. |
[26] |
Z.-P. Jiang, A. R. Teel and L. Praly,
Small-gain theorem for ISS systems and applications, Math. Control Signals Systems, 7 (1994), 95-120.
doi: 10.1007/BF01211469. |
[27] |
Z.-P. Jiang, I. M. Y. Mareels and Y. Wang,
A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems, Automatica J. IFAC, 32 (1996), 1211-1215.
doi: 10.1016/0005-1098(96)00051-9. |
[28] |
H. K. Khalil, Nonlinear Systems, Prentice-Hall, 1996. Google Scholar |
[29] |
S. Mohammad Khansari-Zadeh and A. Billard,
Learning control Lyapunov function to ensure stability of dynamical system-based robot reaching motions, Robotics and Autonomous Systems, 62 (2014), 752-765.
doi: 10.1016/j.robot.2014.03.001. |
[30] |
N. E. Kirin, R. A. Nelepin and V. N. Ba${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$daev, Construction of the attraction region by Zubov's method, Differ. Equations, 17 (1982), 871-880. Google Scholar |
[31] |
F. L. Lewis, S. Jagannathan and A. Yeşildirek, Neural Network Control of Robot Manipulators and Nonlinear Systems, Taylor and Francis, 1998. Google Scholar |
[32] |
H. Li, Computation of Lyapunov Functions and Stability of Interconnected Systems, Ph.D dissertation, Universität Bayreuth, 2015. Google Scholar |
[33] |
Y. Long and M. M. Bayoumi, Feedback stabilization: Control Lyapunov functions modelled by neural networks, Proceedings of the 32nd IEEE Conference on Decision and Control, San Antonio, TX, 1993.
doi: 10.1109/CDC.1993.325708. |
[34] |
H. N. Mhaskar,
Neural networks for optimal approximation of smooth and analytic functions, Neural Comput., 8 (1996), 164-177.
doi: 10.1162/neco.1996.8.1.164. |
[35] |
N. Noroozi, P. Karimaghaee, F. Safaei and H. Javadi, Generation of Lyapunov functions by neural networks, Proceedings of the World Congress on Engineering. Vol I, London, UK, 2008. Google Scholar |
[36] |
V. Petridis and S. Petridis, Construction of neural network based Lyapunov functions, Proceedings of the International Joint Conference on Neural Networks, Vancouver, Canada, 2006, 5059-5065. Google Scholar |
[37] |
T. Poggio, H. Mhaskar, L. Rosaco, B. Miranda and Q. Liao,
Why and when can deep - but not shallow - networks avoid the curse of dimensionality: A review, Int. J. Automat. Computing, 14 (2017), 503-519.
doi: 10.1007/s11633-017-1054-2. |
[38] |
C. Reisinger and Y. Zhang, Rectified deep neural networks overcome the curse of dimensionality for nonsmooth value functions in zero-sum games of nonlinear stiff systems, Anal. Appl. (Singap.), 18 (2020), 951--999.
doi: 10.1142/S0219530520500116. |
[39] |
S. M. Richards, F. Berkenkamp and A. Krause, The Lyapunov neural network: Adaptive stability certification for safe learning of dynamical systems, Proceedings of the 2nd Conference on Robot Learning - CoRL 2018, Zürich, Switzerland, 2018. Available from: arXiv: 1808.00924. Google Scholar |
[40] |
B. S. Rüffer, Monotone Systems, Graphs, and Stability of Large-Scale Interconnected Systems, Ph.D dissertation, Universität Bremen, Germany, 2007. Google Scholar |
[41] |
G. Serpen, Empirical approximation for Lyapunov functions with artificial neural nets, Proc. International Joint Conference on Neural Networks, Montreal, Que., Canada, 2005.
doi: 10.1109/IJCNN.2005.1555943. |
[42] |
J. Sirignano and K. Spiliopoulos,
DGM: A deep learning algorithm for solving partial differential equations, J. Comput. Phys., 375 (2018), 1339-1364.
doi: 10.1016/j.jcp.2018.08.029. |
[43] |
E. D. Sontag,
Smooth stabilization implies coprime factorization, IEEE Trans. Automat. Control, 34 (1989), 435-443.
doi: 10.1109/9.28018. |
[44] |
E. D. Sontag,
Feedback stabilization using two-hidden-layer nets, IEEE Trans. Neural Networks, 3 (1992), 981-990.
doi: 10.1109/72.165599. |
[45] |
V. I. Zubov, Methods of A.M. Lyapunov and Their Application, P. Noordhoff Ltd, Groningen, 1964. |
show all references
References:
[1] |
M. Abadi, A. Agarwal, P. Barham, E. Brevdo and Z. Chen, et al., TensorFlow: Large-scale machine learning on heterogeneous systems, 2015., Available from: https://www.tensorflow.org/. Google Scholar |
[2] |
M. Abu-Khalaf and F. L. Lewis,
Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach, Automatica J. IFAC, 41 (2005), 779-791.
doi: 10.1016/j.automatica.2004.11.034. |
[3] |
J. Anderson and A. Papachristodoulou,
Advances in computational Lyapunov analysis using sum-of-squares programming, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2361-2381.
doi: 10.3934/dcdsb.2015.20.2361. |
[4] |
J. Berner, P. Grohs and A. Jentzen,
Analysis of the generalization error: Empirical risk minimization over deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations, SIAM J. Math. Data Sci., 2 (2020), 631-657.
doi: 10.1137/19M125649X. |
[5] |
L. Bottou, Large-scale machine learning with stochastic gradient descent, in Proceedings of COMPSTAT'2010, Physica-Verlag/Springer, Heidelberg, 2010, 177-186.
doi: 10.1007/978-3-7908-2604-3_16. |
[6] |
L. Bottou, F. E. Curtis and J. Nocedal,
Optimization methods for large-scale machine learning, SIAM Rev., 60 (2018), 223-311.
doi: 10.1137/16M1080173. |
[7] |
F. Camilli, L. Grüne and F. Wirth, A regularization of Zubov's equation for robust domains of attraction, in Nonlinear Control in the Year 2000, Lect. Notes Control Inf. Sci., 258, NCN, Springer, London, 2001, 277-289.
doi: 10.1007/BFb0110220. |
[8] |
F. Camilli, L. Grüne and F. Wirth, Domains of attraction of interconnected systems: A Zubov method approach, European Control Conference (ECC), Budapest, Hungary, 2009.
doi: 10.23919/ECC.2009.7074385. |
[9] |
G. Cybenko,
Approximation by superpositions of a sigmoidal function, Math. Control Signals Systems, 2 (1989), 303-314.
doi: 10.1007/BF02551274. |
[10] |
J. Darbon, G. P. Langlois and T. Meng, Overcoming the curse of dimensionality for some Hamilton-Jacobi partial differential equations via neural network architectures, Res. Math. Sci., 7 (2020), 50pp.
doi: 10.1007/s40687-020-00215-6. |
[11] |
S. Dashkovskiy, H. Ito and F. Wirth,
On a small gain theorem for ISS networks in dissipative Lyapunov form, Eur. J. Control, 17 (2011), 357-365.
doi: 10.3166/ejc.17.357-365. |
[12] |
S. N. Dashkovskiy, B. S. Rüffer and F. R. Wirth,
Small gain theorems for large scale systems and construction of ISS Lyapunov functions, SIAM J. Control Optim., 48 (2010), 4089-4118.
doi: 10.1137/090746483. |
[13] |
W. E, J. Han and A. Jentzen,
Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations, Commun. Math. Stat., 5 (2017), 349-380.
doi: 10.1007/s40304-017-0117-6. |
[14] |
P. Giesl and S. Hafstein,
Computation of Lyapunov functions for nonlinear discrete time systems by linear programming, J. Difference Equ. Appl., 20 (2014), 610-640.
doi: 10.1080/10236198.2013.867341. |
[15] |
P. Giesl and S. Hafstein,
Review on computational methods for Lyapunov functions, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2291-2331.
doi: 10.3934/dcdsb.2015.20.2291. |
[16] |
P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis Functions, Lecture Notes in Mathematics, 1904, Springer, Berlin, 2007.
doi: 10.1007/978-3-540-69909-5. |
[17] |
L. Grüne, Overcoming the curse of dimensionality for approximating Lyapunov functions with deep neural networks under a small-gain condition, preprint, arXiv: 2001.08423. Google Scholar |
[18] |
S. Hafstein, C. M. Kellett and H. Li, Continuous and piecewise affine Lyapunov functions using the Yoshizawa construction, American Control Conference, Portland, OR, 2014.
doi: 10.1109/ACC.2014.6858660. |
[19] |
S. F. Hafstein, An algorithm for constructing Lyapunov functions, Electronic Journal of Differential Equations, Monograph, 8, Texas State University-San Marcos, Department of Mathematics, San Marcos, TX, 2007, 100pp. |
[20] |
W. Hahn, Stability of Motion, Die Grundlehren der mathematischen Wissenschaften, 138, Springer-Verlag New York, Inc., New York, 1967.
doi: 10.1007/978-3-642-50085-5. |
[21] |
J. Han, A. Jentzen and W. E,
Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. USA, 115 (2018), 8505-8510.
doi: 10.1073/pnas.1718942115. |
[22] |
K. Hornik, M. Stinchcombe and H. White,
Multilayer feedforward networks are universal approximators, Neural Networks, 2 (1989), 359-366.
doi: 10.1016/0893-6080(89)90020-8. |
[23] |
C. Huré, H. Pham and X. Warin,
Deep backward schemes for high-dimensional nonlinear PDEs, Math. Comp., 89 (2020), 1547-1579.
doi: 10.1090/mcom/3514. |
[24] |
M. Hutzenthaler, A. Jentzen and T. Kruse, Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities, preprint, arXiv: 1912.02571. Google Scholar |
[25] |
M. Hutzenthaler, A. Jentzen, T. Kruse and T. A. Nguyen, A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations, SN Partial Differ. Equ. Appl., 10 (2020).
doi: 10.1007/s42985-019-0006-9. |
[26] |
Z.-P. Jiang, A. R. Teel and L. Praly,
Small-gain theorem for ISS systems and applications, Math. Control Signals Systems, 7 (1994), 95-120.
doi: 10.1007/BF01211469. |
[27] |
Z.-P. Jiang, I. M. Y. Mareels and Y. Wang,
A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems, Automatica J. IFAC, 32 (1996), 1211-1215.
doi: 10.1016/0005-1098(96)00051-9. |
[28] |
H. K. Khalil, Nonlinear Systems, Prentice-Hall, 1996. Google Scholar |
[29] |
S. Mohammad Khansari-Zadeh and A. Billard,
Learning control Lyapunov function to ensure stability of dynamical system-based robot reaching motions, Robotics and Autonomous Systems, 62 (2014), 752-765.
doi: 10.1016/j.robot.2014.03.001. |
[30] |
N. E. Kirin, R. A. Nelepin and V. N. Ba${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$daev, Construction of the attraction region by Zubov's method, Differ. Equations, 17 (1982), 871-880. Google Scholar |
[31] |
F. L. Lewis, S. Jagannathan and A. Yeşildirek, Neural Network Control of Robot Manipulators and Nonlinear Systems, Taylor and Francis, 1998. Google Scholar |
[32] |
H. Li, Computation of Lyapunov Functions and Stability of Interconnected Systems, Ph.D dissertation, Universität Bayreuth, 2015. Google Scholar |
[33] |
Y. Long and M. M. Bayoumi, Feedback stabilization: Control Lyapunov functions modelled by neural networks, Proceedings of the 32nd IEEE Conference on Decision and Control, San Antonio, TX, 1993.
doi: 10.1109/CDC.1993.325708. |
[34] |
H. N. Mhaskar,
Neural networks for optimal approximation of smooth and analytic functions, Neural Comput., 8 (1996), 164-177.
doi: 10.1162/neco.1996.8.1.164. |
[35] |
N. Noroozi, P. Karimaghaee, F. Safaei and H. Javadi, Generation of Lyapunov functions by neural networks, Proceedings of the World Congress on Engineering. Vol I, London, UK, 2008. Google Scholar |
[36] |
V. Petridis and S. Petridis, Construction of neural network based Lyapunov functions, Proceedings of the International Joint Conference on Neural Networks, Vancouver, Canada, 2006, 5059-5065. Google Scholar |
[37] |
T. Poggio, H. Mhaskar, L. Rosaco, B. Miranda and Q. Liao,
Why and when can deep - but not shallow - networks avoid the curse of dimensionality: A review, Int. J. Automat. Computing, 14 (2017), 503-519.
doi: 10.1007/s11633-017-1054-2. |
[38] |
C. Reisinger and Y. Zhang, Rectified deep neural networks overcome the curse of dimensionality for nonsmooth value functions in zero-sum games of nonlinear stiff systems, Anal. Appl. (Singap.), 18 (2020), 951--999.
doi: 10.1142/S0219530520500116. |
[39] |
S. M. Richards, F. Berkenkamp and A. Krause, The Lyapunov neural network: Adaptive stability certification for safe learning of dynamical systems, Proceedings of the 2nd Conference on Robot Learning - CoRL 2018, Zürich, Switzerland, 2018. Available from: arXiv: 1808.00924. Google Scholar |
[40] |
B. S. Rüffer, Monotone Systems, Graphs, and Stability of Large-Scale Interconnected Systems, Ph.D dissertation, Universität Bremen, Germany, 2007. Google Scholar |
[41] |
G. Serpen, Empirical approximation for Lyapunov functions with artificial neural nets, Proc. International Joint Conference on Neural Networks, Montreal, Que., Canada, 2005.
doi: 10.1109/IJCNN.2005.1555943. |
[42] |
J. Sirignano and K. Spiliopoulos,
DGM: A deep learning algorithm for solving partial differential equations, J. Comput. Phys., 375 (2018), 1339-1364.
doi: 10.1016/j.jcp.2018.08.029. |
[43] |
E. D. Sontag,
Smooth stabilization implies coprime factorization, IEEE Trans. Automat. Control, 34 (1989), 435-443.
doi: 10.1109/9.28018. |
[44] |
E. D. Sontag,
Feedback stabilization using two-hidden-layer nets, IEEE Trans. Neural Networks, 3 (1992), 981-990.
doi: 10.1109/72.165599. |
[45] |
V. I. Zubov, Methods of A.M. Lyapunov and Their Application, P. Noordhoff Ltd, Groningen, 1964. |







[1] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[2] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[3] |
Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003 |
[4] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[5] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[6] |
Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781 |
[7] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[8] |
Jingni Guo, Junxiang Xu, Zhenggang He, Wei Liao. Research on cascading failure modes and attack strategies of multimodal transport network. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2020159 |
[9] |
Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021016 |
[10] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[11] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[12] |
Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051 |
[13] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[14] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[15] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[16] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[17] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[18] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
[19] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[20] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]