[1]
|
A. Abouqateb and M. Boucetta, The modular class of a regular Poisson manifold and the Reeb class of its symplectic foliation, C. R. Math., 337 (2003), 61-66.
doi: 10.1016/S1631-073X(03)00254-1.
|
[2]
|
M. Ammar, G. Kass, M. Masmoudi and N. Poncin, Strongly r–matrix induced tensors, Koszul cohomology, and arbitrary–dimensional quadratic Poisson cohomology, Pacific J. Math., 245 (2010), 1-23.
doi: 10.2140/pjm.2010.245.1.
|
[3]
|
M. Avendaño–Camacho, J. A. Vallejo and Yu. Vorobiev, A perturbation theory approach to the stability of the Pais–Uhlenbeck oscillator, J. Math. Phys., 58 (2017), 093501, 13 pp.
doi: 10.1063/1.5000382.
|
[4]
|
P. Balseiro and L. C. García–Naranjo, Gauge transformations, twisted poisson brackets and hamiltonization of nonholonomic systems, Arch. Ration. Mech. Anal., 205 (2012), 267-310.
doi: 10.1007/s00205-012-0512-9.
|
[5]
|
P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende and K. Kavukcuoglu, Interaction networks for learning about objects, relations and physics, in Proc. of the 30th International Conference on Neural Information Proc. Systems (eds. D. D. Lee, U. Luxburg, R. Garnett, M. Sugiyama and I. Guyon), Curran Associates Inc., (2016), 4509–4517.
|
[6]
|
P. G. Breen, C. N. Foley, T. Boekholt and S. P. Zwart, Newton versus the machine: Solving the chaotic three–body problem using deep neural networks, MNRAS, 494 (2020), 2465-2470.
doi: 10.1093/mnras/staa713.
|
[7]
|
F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems, 1$^{st}$ edition, Springer–Verlag, New York, 2005.
doi: 10.1007/978-1-4899-7276-7.
|
[8]
|
H. Bursztyn, On gauge transformations of Poisson structures, in Quantum Field Theory and Noncommutative Geometry, Lecture Notes in Phys. (eds. U. Carow–Watamura, Y. Maeda and S. Watamura), Springer, Berlin Heidelberg, (2005), 89–112.
doi: 10.1007/11342786_5.
|
[9]
|
C. Caracciolo and U. Locatelli, Computer–assisted estimates for Birkhoff normal forms, J. Comput. Dyn., 7 (2020), 425-460.
doi: 10.3934/jcd.2020017.
|
[10]
|
Z. Chen, J. Zhang, M. Arjovsky and L. Bottou, Symplectic recurrent neural networks, in International Conference on Learning Representations, (2020).
|
[11]
|
M. Cranmer, A. Sanchez–Gonzalez, P. Battaglia, R. Xu, K. Cranmer, D. Spergel and S. Ho, Discovering symbolic models from deep learning with inductive biases, in Advances in Neural Information Processing Systems (eds. H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan and H. Lin), Curran Associates Inc., (2020), 17429–17442.
|
[12]
|
P. A. Damianou and F. Petalidou, Poisson brackets with prescribed Casimirs, Canad. J. Math., 64 (2012), 991-1018.
doi: 10.4153/CJM-2011-082-2.
|
[13]
|
P. A. M. Dirac, Quelques problèmes de mécanique quantique, Ann. Inst. Henri Poincaré, 1 (1930), 357-400.
|
[14]
|
M. de la Cruz, N. Gaspar, L. Jiménez–Lara and R. Linares, Classification of the classical ${SL(2,\mathbf{R}^{{}})}$ gauge transformations in the rigid body, Ann. Physics, 379 (2017), 112-130.
doi: 10.1016/j.aop.2017.02.016.
|
[15]
|
S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B, 195 (1987), 216-222.
doi: 10.1016/0370-2693(87)91197-x.
|
[16]
|
J.-P. Dufour and N. T. Zung, Poisson Structures and Their Normal Forms, 1$^{st}$ edition, Birkhäuser Basel, 2005.
|
[17]
|
M. Evangelista–Alvarado, P. Suárez–Serrato, J. Torres–Orozco and R. Vera, On Bott–Morse foliations and their Poisson structures in dimension 3, J. Singul., 19 (2019), 19-33.
doi: 10.5427/jsing.2019.19b.
|
[18]
|
M. A. Evangelista–Alvarado, J. C. Ruíz–Pantaleón and P. Suárez–Serrato, On computational Poisson geometry I: Symbolic foundations, to appear in J. Geom. Mech.
|
[19]
|
L. Falorsi, P. De Haan, T. R. David son and P. Forré, Reparameterizing distributions on Lie groups, in Proceedings of the Twenty–Second International Conference on Artificial Intelligence and Statistics (eds. K. Chaudhuri and M. Sugiyama), PMLR, (2019), 3244–3253.
|
[20]
|
P. Frejlich and I. Marcut, The homology class of a Poisson transversal, Int. Math. Res. Not., 2020 (2020), 2952-2976.
doi: 10.1093/imrn/rny105.
|
[21]
|
B. Fuchssteiner, The Lie algebra structure of degenerate Hamiltonian and bi–Hamiltonian systems, Prog. Theor. Phys., 68 (1982), 1082-1104.
doi: 10.1143/PTP.68.1082.
|
[22]
|
L. C. García–Naranjo, P. Suárez–Serrato and R. Vera, Poisson structures on smooth 4–manifolds, Lett. Math. Phys., 105 (2015), 1533-1550.
doi: 10.1007/s11005-015-0792-8.
|
[23]
|
V. L. Ginzburg and A. Weinstein, Lie–Poisson structure on some Poisson Lie groups, J. Amer. Math. Soc., 5 (1992), 445-453.
doi: 10.2307/2152773.
|
[24]
|
J. Grabowski, G. Marmo and A. M. Perelomov, Poisson structures: Towards a classification, Modern Phys. Lett. A, 08 (1993), 1719-1733.
doi: 10.1142/S0217732393001458.
|
[25]
|
J. Grabowski, Brackets, Int. J. Geom. Methods Mod. Phys., 10 (2013), 1360001, 45 pp.
doi: 10.1142/S0219887813600013.
|
[26]
|
S. Greydanus, M. Dzamba and J. Yosinski, Hamiltonian neural networks, in Advances in Neural Information Processing Systems (eds. H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché–Buc, E. Fox and R. Garnett), NeurIPS, (2019), 15379–15389.
|
[27]
|
V. Guillemin, E. Miranda and A. R. Pires, Codimension one symplectic foliations and regular Poisson stuctures, Bull. Braz. Math. Soc., 42 (2011), 607-623.
doi: 10.1007/s00574-011-0031-6.
|
[28]
|
D. Jimenez, G. Papamakarios, S. Racaniere, M. S. Albergo, G. Kanwar, P. E. Shanahan and K. Cranmer, Normalizing flows on tori and spheres, in Proceedings of the Thirty–Seven International Conference on Machine Learning (eds. N. Lawrence and M. Reid), PMLR, (2020), 8083–8092.
|
[29]
|
D. Jimenez, S. Racaniere, I. Higgins and P. Toth, Equivariant Hamiltonian flows, in CoRR, JCD, (2019).
|
[30]
|
M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66 (2003), 157-216.
doi: 10.1023/B:MATH.0000027508.00421.bf.
|
[31]
|
Y. Kosmann–Schwarzbach, Poisson manifolds, Lie algebroids, modular classes: A survey, SIGMA, 4 (2008), 30 pp.
doi: 10.3842/SIGMA.2008.005.
|
[32]
|
J.–L. Koszul, Crochet de Schouten–Nijenhuis et cohomologie, in Astérisque, Société mathématique de France, (1985), 257–271.
|
[33]
|
V. V. Kozlov, Symmetries, Topology and Resonances in Hamiltonian Mechanics, 1$^{st}$ edition, Springer–Verlag, Berlin Heidelberg, 1996.
doi: 10.1007/978-3-642-78393-7.
|
[34]
|
M. Kröger, M. Hütter and H. C. Öttinger, Symbolic test of the Jacobi identity for given generalized 'Poisson' bracket, Comput. Phys. Commun., 137 (2001), 325-340.
doi: 10.1016/S0010-4655(01)00161-8.
|
[35]
|
M. Lainz, C. Sardón and A. Weinstein, Plasma in a monopole background does not have a twisted Poisson structure, Phys. Rev. D, 100 (2019), 105016, 5 pp.
doi: 10.1103/PhysRevD.100.105016.
|
[36]
|
C. Laurent–Gengoux, A. Pichereau and P. Vanhaecke, Poisson Structures, 1$^{st}$ edition, Springer–Verlag, Berlin Heidelberg, 2013.
doi: 10.1007/978-3-642-31090-4.
|
[37]
|
S.-H. Li, C.-X. Dong, L. Zhang and L. Wang, Neural canonical transformation with symplectic flows, Phys. Rev. X, 10 (2020), 021020, 1–13.
doi: 10.1103/PhysRevX.10.021020.
|
[38]
|
A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geom., 12 (1977), 253-300.
doi: 10.4310/jdg/1214433987.
|
[39]
|
Z. J. Liu and P. Xu, On quadratic Poisson structures, Lett. Math. Phys., 26 (1992), 33-42.
doi: 10.1007/BF00420516.
|
[40]
|
Y.–A. Ma, Y. Chen, C. Jin, N. Flammarion and M. I. Jordan, Sampling can be faster than optimization, Proc. Natl. Acad. Sci. USA, 116 (2019), 20881-20885.
doi: 10.1073/pnas.1820003116.
|
[41]
|
I. Marcut and F. Zeiser, The Poisson cohomology of ${\mathfrak{sl}^{\ast}_2(\mathbf{R}^{{}})}$, preprint, arXiv: 1911.11732 [math.SG].
|
[42]
|
P. W. Michor, Topics in Differential Geometry, Graduate Studies in Mathematics, AMS, 2008.
doi: 10.1090/gsm/093.
|
[43]
|
N. Nakanishi, On the structure of infinitesimal automorphisms of linear Poisson manifolds I, J. Math. Kyoto Univ., 31 (1991), 71-82.
doi: 10.1215/kjm/1250519890.
|
[44]
|
A. Pedroza, E. Velasco–Barreras and Yu. Vorobiev, Unimodularity criteria for Poisson structures on foliated manifolds, Lett. Math. Phys., 108 (2018), 861-882.
doi: 10.1007/s11005-017-1014-3.
|
[45]
|
S.–D. Poisson, Sur la variation des constantes arbitraires dans les questions de mécanique, J. Ecole Polytechnique, 8 (1809), 266-344.
|
[46]
|
A. Sanchez–Gonzalez, V. Bapst, K. Cranmer and P. Battaglia, Hamiltonian graph networks with ODE integrators, in CoRR, JCD, (2019).
|
[47]
|
P. Ševera and A. Weinstein, Poisson geometry with a 3–form background, Prog. Theor. Phys., Suppl., 144 (2001), 145-154.
doi: 10.1143/PTPS.144.145.
|
[48]
|
Y. Sheng, Linear Poisson structures on ${\mathbf{R}^{{4}}}$, J. Geom. Phys., 57 (2007), 2398-2410.
doi: 10.1016/j.geomphys.2007.08.008.
|
[49]
|
P. Suárez–Serrato and J. Torres–Orozco, Poisson structures on Wrinkled fibrations, Bol. Soc. Mat. Mex., 22 (2016), 263-280.
doi: 10.1007/s40590-015-0072-8.
|
[50]
|
S. Takato and J. A. Vallejo, Hamiltonian dynamical systems: symbolical, numerical and graphical study, Math. Comput. Sci., 13 (2019), 281-295.
doi: 10.1007/s11786-019-00396-6.
|
[51]
|
D. Tamayo, M. Cranmer, S. Hadden, H. Rein, P. Battaglia, A. Obertas, P. Armitage, S Ho, D. N. Spergel, C. Gilbertson, N. Hussain, A. Silburt, D. Jontof–Hutter and K. Menou, Predicting the long-term stability of compact multiplanet systems, in Proceedings of the National Academy of Sciences (ed. M. R. Berenbaum), PNAS, (2020), 18194–18205.
|
[52]
|
P. Toth, D.J. Rezende, A. Jaegle, S. Racanière, A. Botev and I. Higgins, Hamiltonian generative networks, in International Conference on Learning Representations, (2020).
|
[53]
|
A. Weinstein, The local structure of Poisson manifolds, J. Differential Geom., 18 (1983), 523-557.
doi: 10.4310/jdg/1214437787.
|
[54]
|
A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys., 23 (1997), 379-394.
doi: 10.1016/S0393-0440(97)80011-3.
|
[55]
|
A. Weinstein, Poisson geometry, Differential Geom. Appl., 9 (1998), 213-238.
doi: 10.1016/S0926-2245(98)00022-9.
|