\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On computational Poisson geometry II: Numerical methods

  • * Corresponding author: J. C. Ruíz–Pantaleón

    * Corresponding author: J. C. Ruíz–Pantaleón 

This work is partially supported by UNAM–DGAPA–PAPIIT grant IN104819

Abstract Full Text(HTML) Figure(8) / Table(7) Related Papers Cited by
  • We present twelve numerical methods for evaluation of objects and concepts from Poisson geometry. We describe how each method works with examples, and explain how it is executed in code. These include methods that evaluate Hamiltonian and modular vector fields, compute the image under the coboundary and trace operators, the Lie bracket of differential 1–forms, gauge transformations, and normal forms of Lie–Poisson structures on $ {\mathbf{R}^{{3}}} $. The complexity of each of our methods is calculated, and we include experimental verifications on examples in dimensions two and three.

    Mathematics Subject Classification: 53–04, 53D17, 65P10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 2.1.  Left: Symplectic foliation of $ {\Pi_{\mathfrak{so}(3)}} $ in (5). Right: Modular vector field of $ \Pi $ in (15) relative to the Euclidean volume form on $ {\mathbf{R}^{{3}}} $. The color scale indicates the magnitude of the vectors

    Figure 2.2.  Left: Symplectic foliation of $ {\Pi_{\mathfrak{sl}(2)}} $ in (7). Right: Vector field W in (14), tangent to the symplectic foliation of $ {\Pi_{\mathfrak{sl}(2)}} $ on $ {\mathbf{R}^{{3}}_{x} \setminus \{x_{3}{\rm{–axis}}\}} $. The color scale indicates the magnitude of the vectors

    Figure 2.3.  Symplectic (open book) foliation of $ \Pi $ in (20)

    Figure 3.1.  Log–log graphs of the execution time in seconds versus the number of points in $ {10^{\kappa}} $ –point (irregular) meshes of the $\mathtt{NumPoissonGeometry}$ functions 1–10 in Table 3.3, for $ {\kappa = 3, \ldots, 7} $. In red, the fitted linear model used to predict the asymptotic behavior of the runtime for each function, with the corresponding determination coefficient (R–squared) indicated in each legend. We include a zoom-graph in each plot due to the accumulation of runtime values

    Figure 3.2.  Log–log graphs of the execution time in seconds versus the number of points in $ {10^{\kappa}} $ –point (irregular) meshes of the $\mathtt{NumPoissonGeometry}$ functions 1–5 and 8–11 in Table 3.5, for $ {\kappa = 3, \ldots, 7} $. In red, the fitted linear model used to predict the asymptotic behavior of the runtime for each function, with the corresponding determination coefficient (R–squared) indicated in each legend. We include a zoom–graph in each plot due to the accumulation of runtime values

    Figure 3.3.  Log–log graphs of the execution time in seconds versus the number of points in $ {10^{\kappa}} $ –point (irregular) meshes of the $\mathtt{NumPoissonGeometry}$ functions 6 and 7 in Table 3.5, for $ {\kappa = 3, \ldots, 7} $. In red, the fitted model used to predict the asymptotic behavior of the runtime for each function, with the corresponding determination coefficient (R–squared) indicated in each legend. We include a zoom–graph in each plot due to the accumulation of runtime values

    Figure 3.4.  Log-log graph of the execution time in seconds versus the number of points in a $ {10^{\kappa}} $-point (irregular) mesh of the $\mathtt{NumPoissonGeometry}$ function $\mathtt{num\_modular\_vf}$, for $ {\kappa = 4, \ldots, 7} $. In red, the fitted linear model used to predict the asymptotic behavior of the runtime, with the corresponding determination coefficient (R-squared) indicated in the legend

    Figure 3.5.  Log–log graph of the execution time in seconds versus the number of points in a $ {10^{\kappa}} $ –point (irregular) mesh of the $\mathtt{num\_flaschka\_ratiu\_bivector}$ method, for $ {\kappa = 3, \ldots, 7} $. In red, the fitted linear model used to predict the asymptotic behavior of the runtime, with the corresponding determination coefficient (R–squared) indicated in the legend. We include a zoom–graph due to the accumulation of runtime values

    Table 1.1.  Our numerical methods, with their corresponding algorithms, and examples where they are used. The right column is an informal summary of the algorithmic complexities, computed and presented in detail in Section 3

    Method Algorithm Examples Complexity
    $\mathtt{num\_bivector\_field}$ 2.1 [16,7,31,36] O($ m^2 $)
    $\mathtt{num\_bivector\_to\_matrix}$ 2.2 [16,7,31,36] O($ m^2 $)
    $\mathtt{num\_hamiltonian\_vf}$ 2.3 [33,7,50,6,26] O($ m^2 $)
    $\mathtt{num\_poisson\_bracket}$ 2.4 [34,16,31,36] O($ m^2 $)
    $\mathtt{num\_sharp\_morphism}$ 2.5 [16,31,36] O($ m^2 $)
    $\mathtt{num\_coboundary\_operator}$* 2.6 [43,16,31,2,41] O($ 2^m $)
    $\mathtt{num\_modular\_vf}$* 2.7 [1,16,31,27,36,3,44] O($ 2^m $)
    $\mathtt{num\_curl\_operator}$* 2.8 [24,12,16,36] O($ 2^m $)
    $\mathtt{num\_one\_forms\_bracket}$* 2.9 [16,31,36,25] O($ m^2 $)
    $\mathtt{num\_gauge\_transformation}$ 2.10 [8,4,14] O($ m^7 $)
    $\mathtt{num\_linear\_normal\_form\_R3}$* 2.11 [39,43,23,16,48,7,36,14,41,20] O($ m $)
    $\mathtt{num\_flaschka\_ratiu\_bivector}$* 2.12 [24,12,22,49,17] O($ m^6 $)
     | Show Table
    DownLoad: CSV

    Table 3.1.  Worst–case time complexity of $\mathtt{NumPoissonGeometry}$ methods. In the second column: $ m $ denotes the dimension of $ {\mathbf{R}^{{m}}} $, $ k $ is the number of points in a mesh on $ {\mathbf{R}^{{m}}} $, we denote by $ {[\cdot]} $ the integer part function and by $ \mathrm{comb} $ a combination

    Method Time Complexity
    1. $\mathtt{num\_bivector\_field}$ $ { \mathscr{O}(m^2k|bivector|)} $
    2. $\mathtt{num\_bivector\_to\_matrix}$ $ { \mathscr{O}(m^{2}k|bivector|)} $
    3. $\mathtt{num\_hamiltonian\_vf}$ $ { \mathscr{O}(mk(m|bivector| + \mathrm{len}(ham\_function)))} $
    4. $\mathtt{num\_poisson\_bracket}$ $ { \mathscr{O}(mk(m|bivector| + \mathrm{len}(function\_1) + \mathrm{len}(function\_2)))} $
    5. $\mathtt{num\_sharp\_morphism}$ $ { \mathscr{O}(m(mk|bivector| + |one\_form|))} $
    6. $\mathtt{num\_coboundary\_operator}$ $ { \mathscr{O}(\mathrm{comb}(m, [m/2])|bivector|\mathrm{len}(function)(m^{5} + k))} $
    7. $\mathtt{num\_modular\_vf}$ $ { \mathscr{O}(\mathrm{comb}(m, [m/2])|bivector|\mathrm{len}(function)(m+k))} $
    8. $\mathtt{num\_curl\_operator}$ $ { \mathscr{O}(\mathrm{comb}(m, [m/2])|multivector|\mathrm{len}(function)(m+k))} $
    9. $\mathtt{num\_one\_forms\_bracket}$ $ { \mathscr{O}(m^2k|bivector||one\_form\_1||one\_form\_2|)} $
    10. $\mathtt{num\_gauge\_transformation}$ $ { \mathscr{O}(m^2k(m^5 + |bivector| + |two\_form|))} $
    11. $\mathtt{num\_linear\_normal\_form\_R3}$ $ { \mathscr{O}(k|bivector|)} $
    12. $\mathtt{num\_flaschka\_ratiu\_bivector}$ $ { \mathscr{O}(m^{6}k|bivector|)} $
     | Show Table
    DownLoad: CSV

    Table 3.2.  Input data used for the time performance tests of functions 1-10 in Table 3.3

    Function Input Function Input
    1 $ {\Pi_{0}} $ 6 $ {\Pi_{0}} $, $ {W = x_{2} \frac{\partial}{\partial x_{1}} - x_{1} \frac{\partial}{\partial x_{2}}} $
    2 $ {\Pi_{0}} $ 7 $ {\Pi_{0}} $, $ {f=1} $
    3 $ {\Pi_{0}} $, $ {h = x_{1}^{2} + x_{2}^{2}} $ 8 $ {\Pi_{0}} $, $ {f=1} $
    4 $ {\Pi_{0}} $, $ {f = x_{1}^{2} + x_{2}^{2}} $, $ {g=x_{1} + x_{2}} $ 9 $ {\Pi_{0}} $, $ {\alpha = x_{1} \mathrm{d}{x_{1}} + x_{2} \mathrm{d}{x_{2}}} $, $ {\beta = \mathrm{d}{x_{1}} + \mathrm{d}{x_{2}}} $
    5 $ {\Pi_{0}} $, $ {\alpha = x_{1} \mathrm{d}{x_{1}} + x_{2} \mathrm{d}{x_{2}}} $ 10 $ {\Pi_{0}} $, $ {\lambda = \mathrm{d}{x_{1}} \wedge \mathrm{d}{x_{2}}} $
     | Show Table
    DownLoad: CSV

    Table 3.3.  Summary of the time performance of $\mathtt{NumPoissonGeometry}$ functions, in dimension two

    Function Points in mesh/Processing time (in seconds)
    $ 10^{3} $ $ 10^{4} $ $ 10^{5} $ $ 10^{6} $ $ 10^{7} $
    1. $\mathtt{num\_bivector\_field}$ 0.004 $ \pm $ 0.689 0.038 $ \pm $ 0.009 0.356 $ \pm $ 0.002 3.545 $ \pm $ 0.026 35.711 $ \pm $ 0.164
    2. $\mathtt{num\_bivector\_to\_matrix}$ 0.006 $ \pm $ 3.633 0.046 $ \pm $ 0.001 0.438 $ \pm $ 0.004 4.442 $ \pm $ 0.037 45.155 $ \pm $ 1.466
    3. $\mathtt{num\_hamiltonian\_vf}$ 0.014 $ \pm $ 0.001 0.112 $ \pm $ 0.006 1.096 $ \pm $ 0.021 10.867 $ \pm $ 0.044 108.460 $ \pm $ 0.726
    4. $\mathtt{num\_poisson\_bracket}$ 0.021 $ \pm $ 0.006 0.169 $ \pm $ 0.001 1.652 $ \pm $ 0.008 16.721 $ \pm $ 0.049 168.110 $ \pm $ 1.637
    5. $\mathtt{num\_sharp\_morphism}$ 0.014 $ \pm $ 0.658 0.111 $ \pm $ 0.001 1.068 $ \pm $ 0.007 10.725 $ \pm $ 0.142 107.275 $ \pm $ 0.667
    6. $\mathtt{num\_coboundary\_operator}$ 0.001 $ \pm $ 0.087 0.008 $ \pm $ 0.001 0.084 $ \pm $ 0.006 0.848 $ \pm $ 0.011 8.638 $ \pm $ 0.045
    7. $\mathtt{num\_modular\_vf}$ 0.004 $ \pm $ 0.754 0.030 $ \pm $ 0.009 0.280 $ \pm $ 0.001 2.805 $ \pm $ 0.016 28.057 $ \pm $ 0.107
    8. $\mathtt{num\_curl\_operator}$ 0.022 $ \pm $ 0.009 0.196 $ \pm $ 0.024 1.923 $ \pm $ 0.004 18.487 $ \pm $ 0.136 182.774 $ \pm $ 1.260
    9. $\mathtt{num\_one\_forms\_bracket}$ 0.058 $ \pm $ 0.006 0.420 $ \pm $ 0.007 4.278 $ \pm $ 0.027 43.257 $ \pm $ 0.071 434.450 $ \pm $ 0.589
    10. $\mathtt{num\_gauge\_transformation}$ 0.051 $ \pm $ 0.001 0.446 $ \pm $ 0.010 4.380 $ \pm $ 0.016 43.606 $ \pm $ 0.212 434.704 $ \pm $ 1.234
     | Show Table
    DownLoad: CSV

    Table 3.4.  Input data used for the time performance tests of functions 1–11 in Table 3.5

    Function Input
    1 $ \phantom{-}\Pi_{\mathfrak{sl}(2)} $
    2 $ \phantom{-}\Pi_{\mathfrak{sl}(2)} $
    3 $ \phantom{-}\Pi_{\mathfrak{sl}(2)} $, $ {h = x_{1}^{2} + x_{2}^{2} - x_{3}^{2}} $
    4 $ \phantom{-}\Pi_{\mathfrak{sl}(2)} $, $ {f = x_{1}^{2} + x_{2}^{2} - x_{3}^{2}} $, $ {g=x_{1} + x_{2} + x_{3}} $
    5 $ \phantom{-}\Pi_{\mathfrak{sl}(2)} $, $ {\alpha = x_{1} \mathrm{d}{x_{1}} + x_{2} \mathrm{d}{x_{2}} - x_{3} \mathrm{d}{x_{3}}} $
    6 $ \phantom{-}\Pi_{\mathfrak{sl}(2)} $, $ {W = e^{{-1}/{(x_1^2 + x_2^2 - x_3^2)^2}} [ {x_1x_{3}}/(x_1^2 + x_2^2)\frac{\partial}{\partial{x_{1}}} + {x_2x_{3}}/(x_1^2 + x_2^2)\frac{\partial}{\partial{x_{2}}} + \frac{\partial}{\partial{x_{3}}} ]} $
    7 $ \phantom{-}\Pi_{\mathfrak{sl}(2)} $, $ {f=1} $
    8 $ \phantom{-}\Pi_{\mathfrak{sl}(2)} $, $ {f=1} $
    9 $ \phantom{-}\Pi_{\mathfrak{sl}(2)} $, $ {\alpha = x_{1} \mathrm{d}{x_{1}} + x_{2} \mathrm{d}{x_{2}} - x_{3} \mathrm{d}{x_{3}}} $, $ {\beta = \mathrm{d}{x_{1}} + \mathrm{d}{x_{2}} + \mathrm{d}{x_{3}}} $
    10 $ \phantom{-}\Pi_{\mathfrak{sl}(2)} $, $ {\lambda = (x_{2}-x_{1}) \mathrm{d}{x_{1}} \wedge \mathrm{d}{x_{2}} + (x_{3}-x_{1}) \mathrm{d}{x_{1}} \wedge \mathrm{d}{x_{3}} + (x_{2}-x_{3}) \mathrm{d}{x_{2}} \wedge \mathrm{d}{x_{3}}} $
    11 $ -\Pi_{\mathfrak{sl}(2)} $
     | Show Table
    DownLoad: CSV

    Table 3.5.  Summary of the time performance of $\mathtt{NumPoissonGeometry}$ functions in dimension 3

    Function Points in mesh/Processing time (in seconds)
    $ 10^{3} $ $ 10^{4} $ $ 10^{5} $ $ 10^{6} $ $ 10^{7} $
    1. $\mathtt{num\_bivector\_field}$ 0.009 $ \pm $ 0.009 0.051 $ \pm $ 0.004 0.496 $ \pm $ 0.002 4.984 $ \pm $ 0.023 49.565 $ \pm $ 0.222
    2. $\mathtt{num\_bivector\_to\_matrix}$ 0.008 $ \pm $ 3.164 0.057 $ \pm $ 0.002 0.553 $ \pm $ 0.019 5.442 $ \pm $ 0.023 55.249 $ \pm $ 1.690
    3. $\mathtt{num\_hamiltonian\_vf}$ 0.017 $ \pm $ 0.002 0.129 $ \pm $ 0.001 1.263 $ \pm $ 0.022 12.518 $ \pm $ 0.064 126.091 $ \pm $ 0.583
    4. $\mathtt{num\_poisson\_bracket}$ 0.036 $ \pm $ 0.001 0.299 $ \pm $ 0.010 2.936 $ \pm $ 0.067 29.600 $ \pm $ 0.933 292.625 $ \pm $ 6.094
    5. $\mathtt{num\_sharp\_morphism}$ 0.017 $ \pm $ 0.006 0.128 $ \pm $ 0.005 1.252 $ \pm $ 0.005 12.384 $ \pm $ 0.038 124.851 $ \pm $ 1.809
    6. $\mathtt{num\_coboundary\_operator}$ 1.589 $ \pm $ 0.016 1.705 $ \pm $ 0.029 2.815 $ \pm $ 0.032 12.972 $ \pm $ 0.166 111.034 $ \pm $ 1.365
    7. $\mathtt{num\_modular\_vf}$ 0.050 $ \pm $ 0.001 0.103 $ \pm $ 0.004 0.645 $ \pm $ 0.006 6.025 $ \pm $ 0.013 59.652 $ \pm $ 0.146
    8. $\mathtt{num\_curl\_operator}$ 0.019 $ \pm $ 0.010 0.129 $ \pm $ 0.027 1.199 $ \pm $ 0.032 10.911 $ \pm $ 0.181 105.841 $ \pm $ 1.230
    9. $\mathtt{num\_one\_forms\_bracket}$ 0.093 $ \pm $ 0.001 0.738 $ \pm $ 0.007 7.285 $ \pm $ 0.159 72.802 $ \pm $ 1.474 724.514 $ \pm $ 13.594
    10. $\mathtt{num\_gauge\_transformation}$ 0.051 $ \pm $ 0.001 0.445 $ \pm $ 0.010 4.395 $ \pm $ 0.013 43.794 $ \pm $ 0.173 437.326 $ \pm $ 0.824
    11. $\mathtt{num\_linear\_normal\_form\_R3}$ 0.016 $ \pm $ 0.438 0.061 $ \pm $ 0.002 0.504 $ \pm $ 0.012 4.903 $ \pm $ 0.017 48.786 $ \pm $ 0.219
     | Show Table
    DownLoad: CSV

    Table 3.6.  Mean time in seconds (with standard deviation) it takes to evaluate the $\mathtt{num\_flaschka\_ratiu\_bivector}$ method on a irregular mesh on $ \mathbf{R}^{{4}} $ with $ 10^{\kappa} $ points, computed by taking twenty-five samples, for $ {\kappa = 3, \ldots, 7} $

    Function Points in mesh/Processing time (in seconds)
    $ 10^{3} $ $ 10^{4} $ $ 10^{5} $ $ 10^{6} $ $ 10^{7} $
    $\mathtt{num\_flaschka\_ratiu\_bivector}$ 0.0158 $ \pm $ 0.105 0.057 $ \pm $ 0.003 0.505 $ \pm $ 0.003 4.993 $ \pm $ 0.029 49.563 $ \pm $ 0.207
     | Show Table
    DownLoad: CSV
  • [1] A. Abouqateb and M. Boucetta, The modular class of a regular Poisson manifold and the Reeb class of its symplectic foliation, C. R. Math., 337 (2003), 61-66.  doi: 10.1016/S1631-073X(03)00254-1.
    [2] M. AmmarG. KassM. Masmoudi and N. Poncin, Strongly r–matrix induced tensors, Koszul cohomology, and arbitrary–dimensional quadratic Poisson cohomology, Pacific J. Math., 245 (2010), 1-23.  doi: 10.2140/pjm.2010.245.1.
    [3] M. Avendaño–Camacho, J. A. Vallejo and Yu. Vorobiev, A perturbation theory approach to the stability of the Pais–Uhlenbeck oscillator, J. Math. Phys., 58 (2017), 093501, 13 pp. doi: 10.1063/1.5000382.
    [4] P. Balseiro and L. C. García–Naranjo, Gauge transformations, twisted poisson brackets and hamiltonization of nonholonomic systems, Arch. Ration. Mech. Anal., 205 (2012), 267-310.  doi: 10.1007/s00205-012-0512-9.
    [5] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende and K. Kavukcuoglu, Interaction networks for learning about objects, relations and physics, in Proc. of the 30th International Conference on Neural Information Proc. Systems (eds. D. D. Lee, U. Luxburg, R. Garnett, M. Sugiyama and I. Guyon), Curran Associates Inc., (2016), 4509–4517.
    [6] P. G. BreenC. N. FoleyT. Boekholt and S. P. Zwart, Newton versus the machine: Solving the chaotic three–body problem using deep neural networks, MNRAS, 494 (2020), 2465-2470.  doi: 10.1093/mnras/staa713.
    [7] F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems, 1$^{st}$ edition, Springer–Verlag, New York, 2005. doi: 10.1007/978-1-4899-7276-7.
    [8] H. Bursztyn, On gauge transformations of Poisson structures, in Quantum Field Theory and Noncommutative Geometry, Lecture Notes in Phys. (eds. U. Carow–Watamura, Y. Maeda and S. Watamura), Springer, Berlin Heidelberg, (2005), 89–112. doi: 10.1007/11342786_5.
    [9] C. Caracciolo and U. Locatelli, Computer–assisted estimates for Birkhoff normal forms, J. Comput. Dyn., 7 (2020), 425-460.  doi: 10.3934/jcd.2020017.
    [10] Z. Chen, J. Zhang, M. Arjovsky and L. Bottou, Symplectic recurrent neural networks, in International Conference on Learning Representations, (2020).
    [11] M. Cranmer, A. Sanchez–Gonzalez, P. Battaglia, R. Xu, K. Cranmer, D. Spergel and S. Ho, Discovering symbolic models from deep learning with inductive biases, in Advances in Neural Information Processing Systems (eds. H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan and H. Lin), Curran Associates Inc., (2020), 17429–17442.
    [12] P. A. Damianou and F. Petalidou, Poisson brackets with prescribed Casimirs, Canad. J. Math., 64 (2012), 991-1018.  doi: 10.4153/CJM-2011-082-2.
    [13] P. A. M. Dirac, Quelques problèmes de mécanique quantique, Ann. Inst. Henri Poincaré, 1 (1930), 357-400. 
    [14] M. de la CruzN. GasparL. Jiménez–Lara and R. Linares, Classification of the classical ${SL(2,\mathbf{R}^{{}})}$ gauge transformations in the rigid body, Ann. Physics, 379 (2017), 112-130.  doi: 10.1016/j.aop.2017.02.016.
    [15] S. DuaneA. D. KennedyB. J. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B, 195 (1987), 216-222.  doi: 10.1016/0370-2693(87)91197-x.
    [16] J.-P. Dufour and N. T. Zung, Poisson Structures and Their Normal Forms, 1$^{st}$ edition, Birkhäuser Basel, 2005.
    [17] M. Evangelista–AlvaradoP. Suárez–SerratoJ. Torres–Orozco and R. Vera, On Bott–Morse foliations and their Poisson structures in dimension 3, J. Singul., 19 (2019), 19-33.  doi: 10.5427/jsing.2019.19b.
    [18] M. A. Evangelista–Alvarado, J. C. Ruíz–Pantaleón and P. Suárez–Serrato, On computational Poisson geometry I: Symbolic foundations, to appear in J. Geom. Mech.
    [19] L. Falorsi, P. De Haan, T. R. David son and P. Forré, Reparameterizing distributions on Lie groups, in Proceedings of the Twenty–Second International Conference on Artificial Intelligence and Statistics (eds. K. Chaudhuri and M. Sugiyama), PMLR, (2019), 3244–3253.
    [20] P. Frejlich and I. Marcut, The homology class of a Poisson transversal, Int. Math. Res. Not., 2020 (2020), 2952-2976.  doi: 10.1093/imrn/rny105.
    [21] B. Fuchssteiner, The Lie algebra structure of degenerate Hamiltonian and bi–Hamiltonian systems, Prog. Theor. Phys., 68 (1982), 1082-1104.  doi: 10.1143/PTP.68.1082.
    [22] L. C. García–NaranjoP. Suárez–Serrato and R. Vera, Poisson structures on smooth 4–manifolds, Lett. Math. Phys., 105 (2015), 1533-1550.  doi: 10.1007/s11005-015-0792-8.
    [23] V. L. Ginzburg and A. Weinstein, Lie–Poisson structure on some Poisson Lie groups, J. Amer. Math. Soc., 5 (1992), 445-453.  doi: 10.2307/2152773.
    [24] J. GrabowskiG. Marmo and A. M. Perelomov, Poisson structures: Towards a classification, Modern Phys. Lett. A, 08 (1993), 1719-1733.  doi: 10.1142/S0217732393001458.
    [25] J. Grabowski, Brackets, Int. J. Geom. Methods Mod. Phys., 10 (2013), 1360001, 45 pp. doi: 10.1142/S0219887813600013.
    [26] S. Greydanus, M. Dzamba and J. Yosinski, Hamiltonian neural networks, in Advances in Neural Information Processing Systems (eds. H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché–Buc, E. Fox and R. Garnett), NeurIPS, (2019), 15379–15389.
    [27] V. GuilleminE. Miranda and A. R. Pires, Codimension one symplectic foliations and regular Poisson stuctures, Bull. Braz. Math. Soc., 42 (2011), 607-623.  doi: 10.1007/s00574-011-0031-6.
    [28] D. Jimenez, G. Papamakarios, S. Racaniere, M. S. Albergo, G. Kanwar, P. E. Shanahan and K. Cranmer, Normalizing flows on tori and spheres, in Proceedings of the Thirty–Seven International Conference on Machine Learning (eds. N. Lawrence and M. Reid), PMLR, (2020), 8083–8092.
    [29] D. Jimenez, S. Racaniere, I. Higgins and P. Toth, Equivariant Hamiltonian flows, in CoRR, JCD, (2019).
    [30] M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys., 66 (2003), 157-216.  doi: 10.1023/B:MATH.0000027508.00421.bf.
    [31] Y. Kosmann–Schwarzbach, Poisson manifolds, Lie algebroids, modular classes: A survey, SIGMA, 4 (2008), 30 pp. doi: 10.3842/SIGMA.2008.005.
    [32] J.–L. Koszul, Crochet de Schouten–Nijenhuis et cohomologie, in Astérisque, Société mathématique de France, (1985), 257–271.
    [33] V. V. Kozlov, Symmetries, Topology and Resonances in Hamiltonian Mechanics, 1$^{st}$ edition, Springer–Verlag, Berlin Heidelberg, 1996. doi: 10.1007/978-3-642-78393-7.
    [34] M. KrögerM. Hütter and H. C. Öttinger, Symbolic test of the Jacobi identity for given generalized 'Poisson' bracket, Comput. Phys. Commun., 137 (2001), 325-340.  doi: 10.1016/S0010-4655(01)00161-8.
    [35] M. Lainz, C. Sardón and A. Weinstein, Plasma in a monopole background does not have a twisted Poisson structure, Phys. Rev. D, 100 (2019), 105016, 5 pp. doi: 10.1103/PhysRevD.100.105016.
    [36] C. Laurent–Gengoux, A. Pichereau and P. Vanhaecke, Poisson Structures, 1$^{st}$ edition, Springer–Verlag, Berlin Heidelberg, 2013. doi: 10.1007/978-3-642-31090-4.
    [37] S.-H. Li, C.-X. Dong, L. Zhang and L. Wang, Neural canonical transformation with symplectic flows, Phys. Rev. X, 10 (2020), 021020, 1–13. doi: 10.1103/PhysRevX.10.021020.
    [38] A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geom., 12 (1977), 253-300.  doi: 10.4310/jdg/1214433987.
    [39] Z. J. Liu and P. Xu, On quadratic Poisson structures, Lett. Math. Phys., 26 (1992), 33-42.  doi: 10.1007/BF00420516.
    [40] Y.–A. MaY. ChenC. JinN. Flammarion and M. I. Jordan, Sampling can be faster than optimization, Proc. Natl. Acad. Sci. USA, 116 (2019), 20881-20885.  doi: 10.1073/pnas.1820003116.
    [41] I. Marcut and F. Zeiser, The Poisson cohomology of ${\mathfrak{sl}^{\ast}_2(\mathbf{R}^{{}})}$, preprint, arXiv: 1911.11732 [math.SG].
    [42] P. W. Michor, Topics in Differential Geometry, Graduate Studies in Mathematics, AMS, 2008. doi: 10.1090/gsm/093.
    [43] N. Nakanishi, On the structure of infinitesimal automorphisms of linear Poisson manifolds I, J. Math. Kyoto Univ., 31 (1991), 71-82.  doi: 10.1215/kjm/1250519890.
    [44] A. PedrozaE. Velasco–Barreras and Yu. Vorobiev, Unimodularity criteria for Poisson structures on foliated manifolds, Lett. Math. Phys., 108 (2018), 861-882.  doi: 10.1007/s11005-017-1014-3.
    [45] S.–D. Poisson, Sur la variation des constantes arbitraires dans les questions de mécanique, J. Ecole Polytechnique, 8 (1809), 266-344. 
    [46] A. Sanchez–Gonzalez, V. Bapst, K. Cranmer and P. Battaglia, Hamiltonian graph networks with ODE integrators, in CoRR, JCD, (2019).
    [47] P. Ševera and A. Weinstein, Poisson geometry with a 3–form background, Prog. Theor. Phys., Suppl., 144 (2001), 145-154.  doi: 10.1143/PTPS.144.145.
    [48] Y. Sheng, Linear Poisson structures on ${\mathbf{R}^{{4}}}$, J. Geom. Phys., 57 (2007), 2398-2410.  doi: 10.1016/j.geomphys.2007.08.008.
    [49] P. Suárez–Serrato and J. Torres–Orozco, Poisson structures on Wrinkled fibrations, Bol. Soc. Mat. Mex., 22 (2016), 263-280.  doi: 10.1007/s40590-015-0072-8.
    [50] S. Takato and J. A. Vallejo, Hamiltonian dynamical systems: symbolical, numerical and graphical study, Math. Comput. Sci., 13 (2019), 281-295.  doi: 10.1007/s11786-019-00396-6.
    [51] D. Tamayo, M. Cranmer, S. Hadden, H. Rein, P. Battaglia, A. Obertas, P. Armitage, S Ho, D. N. Spergel, C. Gilbertson, N. Hussain, A. Silburt, D. Jontof–Hutter and K. Menou, Predicting the long-term stability of compact multiplanet systems, in Proceedings of the National Academy of Sciences (ed. M. R. Berenbaum), PNAS, (2020), 18194–18205.
    [52] P. Toth, D.J. Rezende, A. Jaegle, S. Racanière, A. Botev and I. Higgins, Hamiltonian generative networks, in International Conference on Learning Representations, (2020).
    [53] A. Weinstein, The local structure of Poisson manifolds, J. Differential Geom., 18 (1983), 523-557.  doi: 10.4310/jdg/1214437787.
    [54] A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys., 23 (1997), 379-394.  doi: 10.1016/S0393-0440(97)80011-3.
    [55] A. Weinstein, Poisson geometry, Differential Geom. Appl., 9 (1998), 213-238.  doi: 10.1016/S0926-2245(98)00022-9.
  • 加载中

Figures(8)

Tables(7)

SHARE

Article Metrics

HTML views(1126) PDF downloads(273) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return