July  2021, 8(3): 307-323. doi: 10.3934/jcd.2021013

On polynomial forms of nonlinear functional differential equations

McGill University, Department of Mathematics and Statistics, 805 Sherbrooke Street West, Montréal, Québec, H3A 0B9, Canada

* Corresponding author: Olivier Hénot

Received  April 2020 Revised  April 2021 Published  July 2021 Early access  June 2021

In this paper we study nonlinear autonomous retarded functional differential equations; that is, functional equations where the time derivative may depend on the past values of the variables. When the nonlinearities in such equations are comprised of elementary functions, we give a constructive proof of the existence of an embedding of the original coordinates yielding a polynomial differential equation. This embedding is a topological conjugacy between the semi-flow of the original differential equation and the semi-flow of the auxiliary polynomial differential equation. Further dynamical features are investigated; notably, for an equilibrium or a periodic orbit and its embedded counterpart, the stable and unstable eigenvalues have the same algebraic and geometric multiplicity.

Citation: Olivier Hénot. On polynomial forms of nonlinear functional differential equations. Journal of Computational Dynamics, 2021, 8 (3) : 307-323. doi: 10.3934/jcd.2021013
References:
[1]

X. CabreE. Fontich and R. de la Llave, The parameterization method for invariant manifolds Ⅰ: Manifolds associated to non-resonant subspaces, Indiana Univ. Math. J., 52 (2003), 283-328.  doi: 10.1512/iumj.2003.52.2245.  Google Scholar

[2]

X. CabreE. Fontich and R. de la Llave, The parameterization method for invariant manifolds Ⅱ: Regularity with respect to parameters, Indiana Univ. Math. J., 52 (2003), 329-360.  doi: 10.1512/iumj.2003.52.2407.  Google Scholar

[3]

X. CabreE. Fontich and R. de la Llave, The parameterization method for invariant manifolds Ⅲ: Overview and applications, Journal of Differential Equations, 218 (2005), 444-515.  doi: 10.1016/j.jde.2004.12.003.  Google Scholar

[4]

A. Deprit and J. F. Price, The computation of characteristic exponents in the planar restricted problem of three bodies, Astronomical Journal, 70 (1965), 836-846.  doi: 10.21236/AD0622985.  Google Scholar

[5]

E. Fehlberg, Zur numerischen Integration von Differentialgleichungen durch Potenzreihen-Ansätze, dargestellt an Hand physikalischer Beispiele, ZAMM, 44 (1964), 83-88.  doi: 10.1002/zamm.19640440303.  Google Scholar

[6]

J. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977. doi: 10.1007/978-1-4612-9892-2.  Google Scholar

[7]

À. Haro, M. Canadell, J.-L. Figueras, A. Luque and J.-M. Mondelo, The Parameterization Method for Invariant Manifolds, Springer International Publishing, Switzerland, 2016. doi: 10.1007/978-3-319-29662-3.  Google Scholar

[8]

S. Kepley and J. D. Mireles, Chaotic motions in the restricted four body problem via Devaney's saddle-focus homoclinic tangle theorem, Journal of Differential Equations, 266 (2019), 1709-1755.  doi: 10.1016/j.jde.2018.08.007.  Google Scholar

[9]

J.-P. LessardJ. D. Mireles and J. Ransford, Automatic differentiation for Fourier series and the radii polynomial approach, Physica D Nonlinear Phenomena, 334 (2016), 174-186.  doi: 10.1016/j.physd.2016.02.007.  Google Scholar

[10]

E. Rabe, Determination and survey of periodic trojan orbits in the restricted problem of three bodies, Astronomical Journal, 66 (1961), 500-513.  doi: 10.1086/108451.  Google Scholar

[11]

E. Rabe, Additional periodic trojan orbits and further studies of their stability features, Astronomical Journal, 67 (1962), 382-390.  doi: 10.1086/108744.  Google Scholar

[12]

E. Rabe and A. F. Schanzle, Periodic librations about the triangular solutions of the restricted earth-moon problem and their orbital stabilities, Astronomical Journal, 67 (1962), 732-739.  doi: 10.1086/108802.  Google Scholar

[13]

L. M. Rauch and W. C. Riddell, The iterative solutions of the analytical $N$-body problem, Journal of the Society for Industrial and Applied Mathematics, 8 (1960), 568-581.  doi: 10.1137/0108043.  Google Scholar

[14]

J. F. Steffensen, On the restricted problem of three bodies, Mat. Fys. Medd. Kgl. Danske Videnskab. Selskab., 30 (1956).  Google Scholar

[15]

J. B. van den Berg, C. Groothedde and J.-P. Lessard, A general method for computer-assisted proofs of periodic solutions in delay differential equations, Journal of Dynamics and Differential Equations, (2020), 1–44. doi: 10.1016/j.jde.2017.11.011.  Google Scholar

show all references

References:
[1]

X. CabreE. Fontich and R. de la Llave, The parameterization method for invariant manifolds Ⅰ: Manifolds associated to non-resonant subspaces, Indiana Univ. Math. J., 52 (2003), 283-328.  doi: 10.1512/iumj.2003.52.2245.  Google Scholar

[2]

X. CabreE. Fontich and R. de la Llave, The parameterization method for invariant manifolds Ⅱ: Regularity with respect to parameters, Indiana Univ. Math. J., 52 (2003), 329-360.  doi: 10.1512/iumj.2003.52.2407.  Google Scholar

[3]

X. CabreE. Fontich and R. de la Llave, The parameterization method for invariant manifolds Ⅲ: Overview and applications, Journal of Differential Equations, 218 (2005), 444-515.  doi: 10.1016/j.jde.2004.12.003.  Google Scholar

[4]

A. Deprit and J. F. Price, The computation of characteristic exponents in the planar restricted problem of three bodies, Astronomical Journal, 70 (1965), 836-846.  doi: 10.21236/AD0622985.  Google Scholar

[5]

E. Fehlberg, Zur numerischen Integration von Differentialgleichungen durch Potenzreihen-Ansätze, dargestellt an Hand physikalischer Beispiele, ZAMM, 44 (1964), 83-88.  doi: 10.1002/zamm.19640440303.  Google Scholar

[6]

J. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977. doi: 10.1007/978-1-4612-9892-2.  Google Scholar

[7]

À. Haro, M. Canadell, J.-L. Figueras, A. Luque and J.-M. Mondelo, The Parameterization Method for Invariant Manifolds, Springer International Publishing, Switzerland, 2016. doi: 10.1007/978-3-319-29662-3.  Google Scholar

[8]

S. Kepley and J. D. Mireles, Chaotic motions in the restricted four body problem via Devaney's saddle-focus homoclinic tangle theorem, Journal of Differential Equations, 266 (2019), 1709-1755.  doi: 10.1016/j.jde.2018.08.007.  Google Scholar

[9]

J.-P. LessardJ. D. Mireles and J. Ransford, Automatic differentiation for Fourier series and the radii polynomial approach, Physica D Nonlinear Phenomena, 334 (2016), 174-186.  doi: 10.1016/j.physd.2016.02.007.  Google Scholar

[10]

E. Rabe, Determination and survey of periodic trojan orbits in the restricted problem of three bodies, Astronomical Journal, 66 (1961), 500-513.  doi: 10.1086/108451.  Google Scholar

[11]

E. Rabe, Additional periodic trojan orbits and further studies of their stability features, Astronomical Journal, 67 (1962), 382-390.  doi: 10.1086/108744.  Google Scholar

[12]

E. Rabe and A. F. Schanzle, Periodic librations about the triangular solutions of the restricted earth-moon problem and their orbital stabilities, Astronomical Journal, 67 (1962), 732-739.  doi: 10.1086/108802.  Google Scholar

[13]

L. M. Rauch and W. C. Riddell, The iterative solutions of the analytical $N$-body problem, Journal of the Society for Industrial and Applied Mathematics, 8 (1960), 568-581.  doi: 10.1137/0108043.  Google Scholar

[14]

J. F. Steffensen, On the restricted problem of three bodies, Mat. Fys. Medd. Kgl. Danske Videnskab. Selskab., 30 (1956).  Google Scholar

[15]

J. B. van den Berg, C. Groothedde and J.-P. Lessard, A general method for computer-assisted proofs of periodic solutions in delay differential equations, Journal of Dynamics and Differential Equations, (2020), 1–44. doi: 10.1016/j.jde.2017.11.011.  Google Scholar

[1]

Joan Gimeno, Àngel Jorba. Using automatic differentiation to compute periodic orbits of delay differential equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4853-4867. doi: 10.3934/dcdsb.2020130

[2]

Roberto Castelli. Efficient representation of invariant manifolds of periodic orbits in the CRTBP. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 563-586. doi: 10.3934/dcdsb.2018197

[3]

Nguyen Thieu Huy, Pham Van Bang. Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2993-3011. doi: 10.3934/dcdsb.2015.20.2993

[4]

Pierluigi Benevieri, Alessandro Calamai, Massimo Furi, Maria Patrizia Pera. On general properties of retarded functional differential equations on manifolds. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 27-46. doi: 10.3934/dcds.2013.33.27

[5]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete & Continuous Dynamical Systems, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579

[6]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete & Continuous Dynamical Systems, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[7]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[8]

Ferenc A. Bartha, Hans Z. Munthe-Kaas. Computing of B-series by automatic differentiation. Discrete & Continuous Dynamical Systems, 2014, 34 (3) : 903-914. doi: 10.3934/dcds.2014.34.903

[9]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[10]

Jun Shen, Kening Lu, Bixiang Wang. Invariant manifolds and foliations for random differential equations driven by colored noise. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6201-6246. doi: 10.3934/dcds.2020276

[11]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[12]

Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete & Continuous Dynamical Systems, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227

[13]

Christopher K. R. T. Jones, Siu-Kei Tin. Generalized exchange lemmas and orbits heteroclinic to invariant manifolds. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 967-1023. doi: 10.3934/dcdss.2009.2.967

[14]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[15]

Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166

[16]

Rossella Bartolo. Periodic orbits on Riemannian manifolds with convex boundary. Discrete & Continuous Dynamical Systems, 1997, 3 (3) : 439-450. doi: 10.3934/dcds.1997.3.439

[17]

Mazyar Ghani Varzaneh, Sebastian Riedel. A dynamical theory for singular stochastic delay differential equations Ⅱ: nonlinear equations and invariant manifolds. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4587-4612. doi: 10.3934/dcdsb.2020304

[18]

Jan Sieber. Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2607-2651. doi: 10.3934/dcds.2012.32.2607

[19]

Karsten Matthies. Exponentially small splitting of homoclinic orbits of parabolic differential equations under periodic forcing. Discrete & Continuous Dynamical Systems, 2003, 9 (3) : 585-602. doi: 10.3934/dcds.2003.9.585

[20]

Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

 Impact Factor: 

Metrics

  • PDF downloads (77)
  • HTML views (251)
  • Cited by (0)

Other articles
by authors

[Back to Top]