In this paper we study nonlinear autonomous retarded functional differential equations; that is, functional equations where the time derivative may depend on the past values of the variables. When the nonlinearities in such equations are comprised of elementary functions, we give a constructive proof of the existence of an embedding of the original coordinates yielding a polynomial differential equation. This embedding is a topological conjugacy between the semi-flow of the original differential equation and the semi-flow of the auxiliary polynomial differential equation. Further dynamical features are investigated; notably, for an equilibrium or a periodic orbit and its embedded counterpart, the stable and unstable eigenvalues have the same algebraic and geometric multiplicity.
Citation: |
[1] |
X. Cabre, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds Ⅰ: Manifolds associated to non-resonant subspaces, Indiana Univ. Math. J., 52 (2003), 283-328.
doi: 10.1512/iumj.2003.52.2245.![]() ![]() ![]() |
[2] |
X. Cabre, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds Ⅱ: Regularity with respect to parameters, Indiana Univ. Math. J., 52 (2003), 329-360.
doi: 10.1512/iumj.2003.52.2407.![]() ![]() ![]() |
[3] |
X. Cabre, E. Fontich and R. de la Llave, The parameterization method for invariant manifolds Ⅲ: Overview and applications, Journal of Differential Equations, 218 (2005), 444-515.
doi: 10.1016/j.jde.2004.12.003.![]() ![]() ![]() |
[4] |
A. Deprit and J. F. Price, The computation of characteristic exponents in the planar restricted problem of three bodies, Astronomical Journal, 70 (1965), 836-846.
doi: 10.21236/AD0622985.![]() ![]() |
[5] |
E. Fehlberg, Zur numerischen Integration von Differentialgleichungen durch Potenzreihen-Ansätze, dargestellt an Hand physikalischer Beispiele, ZAMM, 44 (1964), 83-88.
doi: 10.1002/zamm.19640440303.![]() ![]() ![]() |
[6] |
J. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
doi: 10.1007/978-1-4612-9892-2.![]() ![]() ![]() |
[7] |
À. Haro, M. Canadell, J.-L. Figueras, A. Luque and J.-M. Mondelo, The Parameterization Method for Invariant Manifolds, Springer International Publishing, Switzerland, 2016.
doi: 10.1007/978-3-319-29662-3.![]() ![]() ![]() |
[8] |
S. Kepley and J. D. Mireles, Chaotic motions in the restricted four body problem via Devaney's saddle-focus homoclinic tangle theorem, Journal of Differential Equations, 266 (2019), 1709-1755.
doi: 10.1016/j.jde.2018.08.007.![]() ![]() ![]() |
[9] |
J.-P. Lessard, J. D. Mireles and J. Ransford, Automatic differentiation for Fourier series and the radii polynomial approach, Physica D Nonlinear Phenomena, 334 (2016), 174-186.
doi: 10.1016/j.physd.2016.02.007.![]() ![]() ![]() |
[10] |
E. Rabe, Determination and survey of periodic trojan orbits in the restricted problem of three bodies, Astronomical Journal, 66 (1961), 500-513.
doi: 10.1086/108451.![]() ![]() ![]() |
[11] |
E. Rabe, Additional periodic trojan orbits and further studies of their stability features, Astronomical Journal, 67 (1962), 382-390.
doi: 10.1086/108744.![]() ![]() |
[12] |
E. Rabe and A. F. Schanzle, Periodic librations about the triangular solutions of the restricted earth-moon problem and their orbital stabilities, Astronomical Journal, 67 (1962), 732-739.
doi: 10.1086/108802.![]() ![]() |
[13] |
L. M. Rauch and W. C. Riddell, The iterative solutions of the analytical $N$-body problem, Journal of the Society for Industrial and Applied Mathematics, 8 (1960), 568-581.
doi: 10.1137/0108043.![]() ![]() ![]() |
[14] |
J. F. Steffensen, On the restricted problem of three bodies, Mat. Fys. Medd. Kgl. Danske Videnskab. Selskab., 30 (1956).
![]() ![]() |
[15] |
J. B. van den Berg, C. Groothedde and J.-P. Lessard, A general method for computer-assisted proofs of periodic solutions in delay differential equations, Journal of Dynamics and Differential Equations, (2020), 1–44.
doi: 10.1016/j.jde.2017.11.011.![]() ![]() ![]() |