-
Previous Article
Computing Covariant Lyapunov Vectors in Hilbert spaces
- JCD Home
- This Issue
-
Next Article
On computational Poisson geometry II: Numerical methods
On polynomial forms of nonlinear functional differential equations
McGill University, Department of Mathematics and Statistics, 805 Sherbrooke Street West, Montréal, Québec, H3A 0B9, Canada |
In this paper we study nonlinear autonomous retarded functional differential equations; that is, functional equations where the time derivative may depend on the past values of the variables. When the nonlinearities in such equations are comprised of elementary functions, we give a constructive proof of the existence of an embedding of the original coordinates yielding a polynomial differential equation. This embedding is a topological conjugacy between the semi-flow of the original differential equation and the semi-flow of the auxiliary polynomial differential equation. Further dynamical features are investigated; notably, for an equilibrium or a periodic orbit and its embedded counterpart, the stable and unstable eigenvalues have the same algebraic and geometric multiplicity.
References:
[1] |
X. Cabre, E. Fontich and R. de la Llave,
The parameterization method for invariant manifolds Ⅰ: Manifolds associated to non-resonant subspaces, Indiana Univ. Math. J., 52 (2003), 283-328.
doi: 10.1512/iumj.2003.52.2245. |
[2] |
X. Cabre, E. Fontich and R. de la Llave,
The parameterization method for invariant manifolds Ⅱ: Regularity with respect to parameters, Indiana Univ. Math. J., 52 (2003), 329-360.
doi: 10.1512/iumj.2003.52.2407. |
[3] |
X. Cabre, E. Fontich and R. de la Llave,
The parameterization method for invariant manifolds Ⅲ: Overview and applications, Journal of Differential Equations, 218 (2005), 444-515.
doi: 10.1016/j.jde.2004.12.003. |
[4] |
A. Deprit and J. F. Price,
The computation of characteristic exponents in the planar restricted problem of three bodies, Astronomical Journal, 70 (1965), 836-846.
doi: 10.21236/AD0622985. |
[5] |
E. Fehlberg,
Zur numerischen Integration von Differentialgleichungen durch Potenzreihen-Ansätze, dargestellt an Hand physikalischer Beispiele, ZAMM, 44 (1964), 83-88.
doi: 10.1002/zamm.19640440303. |
[6] |
J. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
doi: 10.1007/978-1-4612-9892-2. |
[7] |
À. Haro, M. Canadell, J.-L. Figueras, A. Luque and J.-M. Mondelo, The Parameterization Method for Invariant Manifolds, Springer International Publishing, Switzerland, 2016.
doi: 10.1007/978-3-319-29662-3. |
[8] |
S. Kepley and J. D. Mireles,
Chaotic motions in the restricted four body problem via Devaney's saddle-focus homoclinic tangle theorem, Journal of Differential Equations, 266 (2019), 1709-1755.
doi: 10.1016/j.jde.2018.08.007. |
[9] |
J.-P. Lessard, J. D. Mireles and J. Ransford,
Automatic differentiation for Fourier series and the radii polynomial approach, Physica D Nonlinear Phenomena, 334 (2016), 174-186.
doi: 10.1016/j.physd.2016.02.007. |
[10] |
E. Rabe,
Determination and survey of periodic trojan orbits in the restricted problem of three bodies, Astronomical Journal, 66 (1961), 500-513.
doi: 10.1086/108451. |
[11] |
E. Rabe,
Additional periodic trojan orbits and further studies of their stability features, Astronomical Journal, 67 (1962), 382-390.
doi: 10.1086/108744. |
[12] |
E. Rabe and A. F. Schanzle,
Periodic librations about the triangular solutions of the restricted earth-moon problem and their orbital stabilities, Astronomical Journal, 67 (1962), 732-739.
doi: 10.1086/108802. |
[13] |
L. M. Rauch and W. C. Riddell,
The iterative solutions of the analytical $N$-body problem, Journal of the Society for Industrial and Applied Mathematics, 8 (1960), 568-581.
doi: 10.1137/0108043. |
[14] |
J. F. Steffensen, On the restricted problem of three bodies, Mat. Fys. Medd. Kgl. Danske Videnskab. Selskab., 30 (1956). |
[15] |
J. B. van den Berg, C. Groothedde and J.-P. Lessard, A general method for computer-assisted proofs of periodic solutions in delay differential equations, Journal of Dynamics and Differential Equations, (2020), 1–44.
doi: 10.1016/j.jde.2017.11.011. |
show all references
References:
[1] |
X. Cabre, E. Fontich and R. de la Llave,
The parameterization method for invariant manifolds Ⅰ: Manifolds associated to non-resonant subspaces, Indiana Univ. Math. J., 52 (2003), 283-328.
doi: 10.1512/iumj.2003.52.2245. |
[2] |
X. Cabre, E. Fontich and R. de la Llave,
The parameterization method for invariant manifolds Ⅱ: Regularity with respect to parameters, Indiana Univ. Math. J., 52 (2003), 329-360.
doi: 10.1512/iumj.2003.52.2407. |
[3] |
X. Cabre, E. Fontich and R. de la Llave,
The parameterization method for invariant manifolds Ⅲ: Overview and applications, Journal of Differential Equations, 218 (2005), 444-515.
doi: 10.1016/j.jde.2004.12.003. |
[4] |
A. Deprit and J. F. Price,
The computation of characteristic exponents in the planar restricted problem of three bodies, Astronomical Journal, 70 (1965), 836-846.
doi: 10.21236/AD0622985. |
[5] |
E. Fehlberg,
Zur numerischen Integration von Differentialgleichungen durch Potenzreihen-Ansätze, dargestellt an Hand physikalischer Beispiele, ZAMM, 44 (1964), 83-88.
doi: 10.1002/zamm.19640440303. |
[6] |
J. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
doi: 10.1007/978-1-4612-9892-2. |
[7] |
À. Haro, M. Canadell, J.-L. Figueras, A. Luque and J.-M. Mondelo, The Parameterization Method for Invariant Manifolds, Springer International Publishing, Switzerland, 2016.
doi: 10.1007/978-3-319-29662-3. |
[8] |
S. Kepley and J. D. Mireles,
Chaotic motions in the restricted four body problem via Devaney's saddle-focus homoclinic tangle theorem, Journal of Differential Equations, 266 (2019), 1709-1755.
doi: 10.1016/j.jde.2018.08.007. |
[9] |
J.-P. Lessard, J. D. Mireles and J. Ransford,
Automatic differentiation for Fourier series and the radii polynomial approach, Physica D Nonlinear Phenomena, 334 (2016), 174-186.
doi: 10.1016/j.physd.2016.02.007. |
[10] |
E. Rabe,
Determination and survey of periodic trojan orbits in the restricted problem of three bodies, Astronomical Journal, 66 (1961), 500-513.
doi: 10.1086/108451. |
[11] |
E. Rabe,
Additional periodic trojan orbits and further studies of their stability features, Astronomical Journal, 67 (1962), 382-390.
doi: 10.1086/108744. |
[12] |
E. Rabe and A. F. Schanzle,
Periodic librations about the triangular solutions of the restricted earth-moon problem and their orbital stabilities, Astronomical Journal, 67 (1962), 732-739.
doi: 10.1086/108802. |
[13] |
L. M. Rauch and W. C. Riddell,
The iterative solutions of the analytical $N$-body problem, Journal of the Society for Industrial and Applied Mathematics, 8 (1960), 568-581.
doi: 10.1137/0108043. |
[14] |
J. F. Steffensen, On the restricted problem of three bodies, Mat. Fys. Medd. Kgl. Danske Videnskab. Selskab., 30 (1956). |
[15] |
J. B. van den Berg, C. Groothedde and J.-P. Lessard, A general method for computer-assisted proofs of periodic solutions in delay differential equations, Journal of Dynamics and Differential Equations, (2020), 1–44.
doi: 10.1016/j.jde.2017.11.011. |
[1] |
Joan Gimeno, Àngel Jorba. Using automatic differentiation to compute periodic orbits of delay differential equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4853-4867. doi: 10.3934/dcdsb.2020130 |
[2] |
Roberto Castelli. Efficient representation of invariant manifolds of periodic orbits in the CRTBP. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 563-586. doi: 10.3934/dcdsb.2018197 |
[3] |
Nguyen Thieu Huy, Pham Van Bang. Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2993-3011. doi: 10.3934/dcdsb.2015.20.2993 |
[4] |
Pierluigi Benevieri, Alessandro Calamai, Massimo Furi, Maria Patrizia Pera. On general properties of retarded functional differential equations on manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 27-46. doi: 10.3934/dcds.2013.33.27 |
[5] |
Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579 |
[6] |
Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057 |
[7] |
Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167 |
[8] |
Ferenc A. Bartha, Hans Z. Munthe-Kaas. Computing of B-series by automatic differentiation. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 903-914. doi: 10.3934/dcds.2014.34.903 |
[9] |
Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure and Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291 |
[10] |
Jun Shen, Kening Lu, Bixiang Wang. Invariant manifolds and foliations for random differential equations driven by colored noise. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6201-6246. doi: 10.3934/dcds.2020276 |
[11] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[12] |
Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227 |
[13] |
Christopher K. R. T. Jones, Siu-Kei Tin. Generalized exchange lemmas and orbits heteroclinic to invariant manifolds. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 967-1023. doi: 10.3934/dcdss.2009.2.967 |
[14] |
Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005 |
[15] |
Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166 |
[16] |
Rossella Bartolo. Periodic orbits on Riemannian manifolds with convex boundary. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 439-450. doi: 10.3934/dcds.1997.3.439 |
[17] |
Andriy Stanzhytsky, Oleksandr Misiats, Oleksandr Stanzhytskyi. Invariant measure for neutral stochastic functional differential equations with non-Lipschitz coefficients. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022005 |
[18] |
Mazyar Ghani Varzaneh, Sebastian Riedel. A dynamical theory for singular stochastic delay differential equations Ⅱ: nonlinear equations and invariant manifolds. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4587-4612. doi: 10.3934/dcdsb.2020304 |
[19] |
Jan Sieber. Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2607-2651. doi: 10.3934/dcds.2012.32.2607 |
[20] |
Karsten Matthies. Exponentially small splitting of homoclinic orbits of parabolic differential equations under periodic forcing. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 585-602. doi: 10.3934/dcds.2003.9.585 |
Impact Factor:
Tools
Article outline
[Back to Top]