[1]

J. H. Ahlberg, E. N. Nilson and J. L. Walsh, The Theory of Splines and Their Applications, Academic Press, New YorkLondon, 1967.

[2]

L. Alvarez, F. Guichard, P.L. Lions and J.M. Morel, Axioms and fundamental equations of image processing, Arch. Rational Mech. Anal., 123 (1993), 199257.
doi: 10.1007/BF00375127.

[3]

B. Andrews, Classification of limiting shapes for isotropic curve flows, J. Amer. Math. Soc., 16 (2003), 443459.
doi: 10.1090/S0894034702004150.

[4]

B. Andrews, Contraction of convex hypersurfaces by their affine normal, J. Differential Geom., 43 (1996), 207230.
doi: 10.4310/jdg/1214458106.

[5]

B. Andrews, Contraction of convex hypersurfaces in Euclidean space, Calc. Var. Partial Differential Equations, 2 (1994), 151171.
doi: 10.1007/BF01191340.

[6]

B. Andrews, Evolving convex curves, Calc. Var. Partial Differential Equations, 7 (1998), 315371.
doi: 10.1007/s005260050111.

[7]

B. Andrews, Nonconvergence and instability in the asymptotic behaviour of curves evolving by curvature, Comm. Anal. Geom., 10 (2002), 409449.
doi: 10.4310/CAG.2002.v10.n2.a8.

[8]

B. Andrews and M. Feldman, Nonlocal geometric expansion of convex planar curves, J. Differential Equations, 182 (2002), 298343.
doi: 10.1006/jdeq.2001.4107.

[9]

V. I. Arnol'd, Singularity Theory, London Mathematical Society Lecture Note Series, 53, Cambridge University Press, CambridgeNew York, 1981.
doi: 10.1017/CBO9780511662713.

[10]

J. W. Barrett, K. Deckelnick and V. Styles, Numerical analysis for a system coupling curve evolution to reaction diffusion on the curve, SIAM J. Numer. Anal., 55 (2017), 10801100.
doi: 10.1137/16M1083682.

[11]

J. W. Barrett, H. Garcke and R. Nürnberg, The approximation of planar evolution by stable fully implicit finite element schemes that equidistribute, Numer. Methods Partial Differential Equations, 27 (2011), 130.
doi: 10.1002/num.20637.

[12]

F. J. Bloore, The shape of pebbles, J. Internat. Assoc. Math. Geol., 9 (1977), 113122.
doi: 10.1007/BF02312507.

[13]

J. W. Bruce, P. J. Giblin and C. G. Gibson, On caustics of plane curves, Amer. Math. Monthly, 88 (1981), 651667.
doi: 10.1080/00029890.1981.11995337.

[14]

R. L. Bryant and P. A. Griffiths, Characteristic cohomology of differential systems. Ⅱ. Conservation laws for a class of parabolic equations, Duke Math. J., 78 (1995), 531676.
doi: 10.1215/S0012709495078247.

[15]

B. Chow, On Harnack's inequailty and entropy for the Gaussian curvature flow, Comm. Pure Appl. Math., 44 (1991), 469483.
doi: 10.1002/cpa.3160440405.

[16]

P. Daskalopoulos and N. Sesum, Ancient solutions to geometric flows, Notices Amer. Math. Soc., 67 (2020), 467474.

[17]

M. Demazure, Bifurcations and Catastrophes. Geometry of Solutions to Nonlinear Problems, Universitext, SpringerVerlag, Berlin, 2000.
doi: 10.1007/9783642571343.

[18]

E. J. Doedel, Lecture notes on numerical analysis of nonlinear equations, in Numerical Continuation Methods for Dynamical Systems, Underst. Complex Syst., Springer, Dordrecht, 2007, 149.
doi: 10.1007/9781402063565_1.

[19]

G. Domokos, Monotonicity of spatial critical points evolving under curvaturedriven flows, J. Nonlinear Sci., 25 (2015), 247275.
doi: 10.1007/s0033201492283.

[20]

G. Domokos, Natural numbers, natural shapes, Axiomathes, (2018).
doi: 10.1007/s1051601894115.

[21]

G. Domokos and G. W. Gibbons, The evolution of pebble size and shape in space and time, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 468 (2012), 30593079.
doi: 10.1098/rspa.2011.0562.

[22]

G. Domokos and Z. Lángi, The isoperimetric quotient of a convex body decreases monotonically under the Eikonal abrasion model, Mathematika, 65 (2019), 119129.
doi: 10.1112/S0025579318000347.

[23]

G. Domokos, Z. Lángi and A. A. Sipos, Tracking critical points on evolving curves and surfaces, Experimental Math., 120.
doi: 10.1080/10586458.2018.1556136.

[24]

G. Domokos, J. Papadopulos and A. Ruina, Static equilibria of planar, rigid bodies: Is there anything new?, J. Elasticity, 36 (1994), 5966.
doi: 10.1007/BF00042491.

[25]

G. Domokos, A. Sipos, T. Szabó and P. Várkonyi, Pebbles, shapes and equilibria, Math. Geosci., 42 (2010).
doi: 10.1007/s1100400992504.

[26]

T. A. Driscoll, N. Hale and L. N. Trefethen, Chebfun Guide, Pafnuty Publications, Oxford, 2014.

[27]

F. Dubeau and J. Savoie, Periodic quadratic spline interpolation, J. Approx. Theory, 39 (1983), 7788.
doi: 10.1016/00219045(83)900709.

[28]

G. Dziuk, Discrete anisotropic curve shortening flow, SIAM J. Numer. Anal., 36 (1999), 18081830.
doi: 10.1137/S0036142998337533.

[29]

D. L. Fidal and P. J. Giblin, Generic $1$parameter families of caustics by reflexion in the plane, Math. Proc. Cambridge Philos. Soc., 96 (1984), 425432.
doi: 10.1017/S0305004100062332.

[30]

W. J. Firey, Shapes of worn stones, Mathematika, 21 (1974), 111.
doi: 10.1112/S0025579300005714.

[31]

M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom., 23 (1986), 6996.
doi: 10.4310/jdg/1214439902.

[32]

M. E. Gage, Curve shortening makes convex curves circular, Invent. Math., 76 (1984), 357364.
doi: 10.1007/BF01388602.

[33]

M. Golubitsky and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory. Vol. I, Applied Mathematical Sciences, 51, SpringerVerlag, New York, 1985.
doi: 10.1007/9781461250340.

[34]

M. A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285314.
doi: 10.4310/jdg/1214441371.

[35]

R. Hamilton, Threemanifolds with positive Ricci curvature, J. Differential Geom., 17 (1982), 255306.
doi: 10.4310/jdg/1214436922.

[36]

G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20 (1984), 237266.
doi: 10.4310/jdg/1214438998.

[37]

A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1996.

[38]

T. Ishiwata and T. Ohtsuka, Evolution of a spiralshaped polygonal curve by the crystalline curvature flow with a pinned tip, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 52615295.
doi: 10.3934/dcdsb.2019058.

[39]

M. Kardar, G. Parisi and Y.C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56 (1986), 889892.
doi: 10.1103/PhysRevLett.56.889.

[40]

A. Kneser, Bemerkungen über die Anzahl der Extrema der Krümmung auf geschlossenen Kurven und über verwandte Fragen in einer nicht euklidischen Geometrie, in Festschrift Heinrich Weber, Teubner, 1912,170180.

[41]

J. J. Koenderink, The structure of images, Biol. Cybernet., 50 (1984), 363370.
doi: 10.1007/BF00336961.

[42]

C. Lu, Y. Cao and D. Mumford, Surface evolution under curvature flows, J. Visual Commun. Image Rep., 13 (2002), 6581.
doi: 10.1006/jvci.2001.0476.

[43]

G. MacDonald, J. A. Mackenzie, M. Nolan and R. H. Insall, A computational method for the coupled solution of reactiondiffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis, J. Comput. Phys., 309 (2016), 207226.
doi: 10.1016/j.jcp.2015.12.038.

[44]

J. A. Mackenzie, M. Nolan, C. F. Rowlatt and R. H. Insall, An adaptive moving mesh method for forced curve shortening flow, SIAM J. Sci. Comput., 41 (2019), A1170A1200.
doi: 10.1137/18M1211969.

[45]

R. Malladi and J. A. Sethian, Level set methods for curvature flow, image enchancement, and shape recovery in medical images, in Visualization and Mathematics, Springer, Berlin, 1997,329345.
doi: 10.1007/9783642591952_21.

[46]

K. Mikula and D. Ševčovič, Solution of nonlinearly curvature driven evolution of plane curves, Appl. Numer. Math., 31 (1999), 191207.
doi: 10.1016/S01689274(98)001305.

[47]

F. Mokhtarian, S. Abbasi and J. Kittler, Efficient and robust retrieval by shape content through curvature scale space, in Image Databases and Multimedia Search, 1998, 5158.
doi: 10.1142/9789812797988_0005.

[48]

F. Mokhtarian and R. Suomela, Robust image corner detection through curvature scale space, IEEE Trans. Pattern Anal. Mach. Intell., 20 (1998), 13761381.
doi: 10.1109/34.735812.

[49]

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Applied Mathematical Sciences, 153, SpringerVerlag, New York, 2003.
doi: 10.1007/b98879.

[50]

S. Osher and J. A. Sethian, Fronts propagating with curvaturedependent speed: Algorithms based on HamiltonJacobi formulations, J. Comput. Phys., 79 (1988), 1249.
doi: 10.1016/00219991(88)900022.

[51]

G. Perelman, Ricci flow with surgery on threemanifolds, preprint, arXiv: math/0303109.

[52]

S. Popinet and S. Zaleski, A fronttracking algorithm for accurate representation of surface tension, Internat. J. Numer. Methods Fluids, 30 (1999), 775793.

[53]

T. Poston and I. Stewart, Catastrophe Theory and its Applications, Dover Publications, Inc., Mineola, NY, 1996.

[54]

T. J. Rivlin, An Introduction to the Approximation of Functions, Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1981.

[55]

J. A. Sethian, Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechnics, Computer Vision and Materials Science, Cambridge Monographs on Applied and Computational Mathematics, 3, Cambridge University Press, Cambridge, 1999.

[56]

T. Szabó, G. Domokos, J. P. Grotzinger and D. J. Jerolmack, Reconstructing the transport history of pebbles on Mars, Nature Communications, 6 (2015).
doi: 10.1038/ncomms9366.

[57]

A. Townsend, H. Wilber and G. B. Wright, Computing with functions in spherical and polar geometries. Ⅰ. The sphere, SIAM J. Sci. Comput., 38 (2006), C403C425.
doi: 10.1137/15M1045855.

[58]

L. N. Trefethen, Approximation Theory and Approximation Practice, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013.

[59]

P. L. Várkonyi and G. Domokos, Static equilibria of rigid bodies: Dice, pebbles, and the PoincaréHopf theorem, J. Nonlinear Sci., 16 (2006), 255281.
doi: 10.1007/s0033200506918.

[60]

G. B. Wright, M. Javed, H. Montanelli and L. N. Trefethen, Extension of Chebfun to periodic functions, SIAM J. Sci. Comput., 37 (2015), C554C573.
doi: 10.1137/141001007.
