[1]
|
G. Berkolaiko, E. Buckwar, C. Kelly and A. Rodkina, Almost sure asymptotic stability analysis of the $\theta$-Maruyama method applied to a test system with stabilising and destabilising stochastic perturbations, LMS J. Comp. Math., 15 (2012), 71-83.
doi: 10.1112/S1461157012000010.
|
[2]
|
E. Buckwar and T. Sickenberger, A comparative linear mean-square stability analysis of Maruyama- and Milstein-type methods, Math. Comput. Simul., 81 (2011), 1110-1127.
doi: 10.1016/j.matcom.2010.09.015.
|
[3]
|
E. Buckwar and T. Sickenberger, A structural analysis of asymptotic mean-square stability for multi-dimensional linear stochastic differential systems, Appl. Numer. Math., 62 (2012), 842-859.
doi: 10.1016/j.apnum.2012.03.002.
|
[4]
|
K. Burrage, I. Lenane and G. Lythe, Numerical methods for second-order stochastic differential equations, SIAM J. Sci. Comput., 29 (2007), 245-264.
doi: 10.1137/050646032.
|
[5]
|
P. M. Burrage and K. Burrage, Structure-preserving Runge-Kutta methods for stochastic Hamiltonian equations with additive noise, Numer. Algorithms, 65 (2014), 519-532.
doi: 10.1007/s11075-013-9796-6.
|
[6]
|
C. Chen, D. Cohen, R. D'Ambrosio and A. Lang, Drift-preserving numerical integrators for stochastic Hamiltonian systems, Adv. Comput. Math., 46 (2020), art. no. 27.
doi: 10.1007/s10444-020-09771-5.
|
[7]
|
V. Citro and R. D'Ambrosio, Long-term analysis of stochastic $\theta$-methods for damped stochastic oscillators, Appl. Numer. Math., 150 (2020), 18-26.
doi: 10.1016/j.apnum.2019.08.011.
|
[8]
|
D. Conte, R. D'Ambrosio and B. Paternoster, On the stability of $\vartheta$-methods for stochastic Volterra integral equations, Disc. Cont. Dyn. Sys. - Series B, 23 (2018), 2695-2708.
doi: 10.3934/dcdsb.2018087.
|
[9]
|
R. D'Ambrosio, G. Giordano, B. Paternoster and A. Ventola, Perturbative analysis of stochastic Hamiltonian problems under time discretizations, Appl. Math. Lett., 120 (2021), article number 107223.
doi: 10.1016/j.aml.2021.107223.
|
[10]
|
R. D'Ambrosio and S. D. Giovacchino, Mean-square contractivivity of stochastic $\theta$-methods, Commun. Nonlinear Sci. Numer. Simul, 96 (2021), 105671.
doi: 10.1016/j.cnsns.2020.105671.
|
[11]
|
R. D'Ambrosio, M. Moccaldi and B. Paternoster, Numerical preservation of long-term dynamics by stochastic two-step methods, Discr. Cont. Dyn. Sys. B, 23 (2018), 2763-2773.
doi: 10.3934/dcdsb.2018105.
|
[12]
|
R. D'Ambrosio and C. Scalone, On the numerical structure preservation of nonlinear damped stochastic oscillators, Numer. Algorithm, 86 (2021), 933-952.
doi: 10.1007/s11075-020-00918-5.
|
[13]
|
H. de la Cruz, J. C. Jimenez and J. P. Zubelli, Locally linearized methods for the sim- ulation of stochastic oscillators driven by random forces, BIT, 57 (2017), 123-151.
doi: 10.1007/s10543-016-0620-2.
|
[14]
|
G. Failla and A. Pirrotta, On the stochastic response of a fractionally-damped Duffing oscillator, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 5131-5142.
doi: 10.1016/j.cnsns.2012.03.033.
|
[15]
|
C. W. Gardiner, Handbook of Stochastic Methods, for Physics, 3$^{rd}$ edition, Chemistry and the Natural Sciences, 13, Springer-Verlag, 2004.
|
[16]
|
M. B. Giles, Multi-level Monte Carlo path simulation, Oper. Res., 56 (2008), 607-617.
doi: 10.1287/opre.1070.0496.
|
[17]
|
D. J. Higham, Mean-square and asymptotic stability of the stochastic theta mehods, SIAM J. Numer. Anal., 38 (2000), 753-769.
doi: 10.1137/S003614299834736X.
|
[18]
|
D. J. Higham and P. Kloeden, An Introduction to the Numerical Simulation of Stochastic Differential Equations, SIAM, 2021.
|
[19]
|
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin, 1992.
doi: 10.1007/978-3-662-12616-5.
|
[20]
|
K. Nouri, H. Ranjbar and J. C. Cortés López, Modifying the split-step $\theta$-method with harmonic-mean term for stochastic differential equations, Int. J. Numer. Anal. Model., 17 (2020), 662-678.
|
[21]
|
D. Roy, A new numeric-analytical principle for nonlinear deterministic and stochastic dynamical systems, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 539-566.
doi: 10.1098/rspa.2000.0681.
|
[22]
|
Y. Saito and T. Mitsui, Stability analysis of numerical schemes for stochastic differential equations, SIAM J. Numer. Anal., 33 (1996), 2254-2267.
doi: 10.1137/S0036142992228409.
|
[23]
|
J. Yalim, B. D. Welfert and J. M. Lopez, Evaluation of closure strategies for a periodically-forced Duffing oscillator with slowly modulated frequency subject to Gaussian white noise, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 144-158.
doi: 10.1016/j.cnsns.2016.08.003.
|
[24]
|
J. Zhang and L. Wang, A new symplectic method for a linear stochastic oscillator via stochastic variational integrators, AIP Conference Proceedings, 1479 (2012), 1772-1775.
doi: 10.1063/1.4756519.
|