doi: 10.3934/jcd.2022002
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Hamiltonian control of magnetic field lines: Computer assisted results proving the existence of KAM barriers

Dipartimento di Matematica, Università degli Studi di Roma "Tor Vergata", via della Ricerca Scientifica 1, 00133 — Rome, Italy

* Corresponding author: Ugo Locatelli

Received  May 2021 Revised  January 2022 Early access February 2022

We reconsider a control theory for Hamiltonian systems, that was introduced on the basis of KAM theory and applied to a model of magnetic field in previous articles. By a combination of Frequency Analysis and of a rigorous (Computer Assisted) KAM algorithm we prove that in the phase space of the magnetic field, due to the control term, a set of invariant tori appear, and it acts as a transport barrier. Our analysis, which is common (but often also limited) to Celestial Mechanics, is based on a normal form approach; it is also quite general and can be applied to quasi-integrable Hamiltonian systems satisfying a few additional mild assumptions. As a novelty with respect to the works that in the last two decades applied Computer Assisted Proofs into the framework of KAM theory, we provide all the codes allowing to produce our results. They are collected in a software package that is publicly available from the Mendeley Data repository. All these codes are designed in such a way to be easy-to-use, also for what concerns eventual adaptations for applications to similar problems.

Citation: Lorenzo Valvo, Ugo Locatelli. Hamiltonian control of magnetic field lines: Computer assisted results proving the existence of KAM barriers. Journal of Computational Dynamics, doi: 10.3934/jcd.2022002
References:
[1]

S. S. Abdullaev, Construction of Mappings for Hamiltonian Systems and Their Applications, Lecture Notes in Physics. Spinger, Berlin Heidelberg, 2006.

[2]

P. M. Bellan, Fundamentals of Plasma Physics, Cambridge University Press, July 2008.

[3]

G. BenettinL. GalganiA. Giorgilli and J.-M. Strelcyn, A proof of Kolmogorov's theorem on invariant tori using canonical transformations defined by the Lie method, Nuovo Cimento B, 79 (1984), 201-223.  doi: 10.1007/BF02748972.

[4]

C. Caracciolo and U. Locatelli, Computer-assisted estimates for Birkhoff normal forms, J. Comput. Dyn., 7 (2020), 425-460.  doi: 10.3934/jcd.2020017.

[5]

A. Carati, M. Zuin, A. Maiocchi, M. Marino, E. Martines and L. Galgani, Transition from order to chaos, and density limit, in magnetized plasmas, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22 (2012), 033124, 7 pp. doi: 10.1063/1.4745851.

[6]

A. CellettiA. Giorgilli and U. Locatelli, Improved estimates on the existence of invariant tori for Hamiltonian systems, Nonlinearity, 13 (2000), 397-412.  doi: 10.1088/0951-7715/13/2/304.

[7]

C. ChandreM. VittotG. CiraoloP. Ghendrih and R. Lima, Control of stochasticity in magnetic field lines, Nuclear Fusion, 46 (2006), 33-45. 

[8]

G. CiraoloF. BriolleC. ChandreE. FlorianiR. LimaM. VittotM. PettiniC. Figarella and P. Ghendrih, Control of Hamiltonian chaos as a possible tool to control anomalous transport in fusion plasmas, Physical Review E, 69 (2004), 056213. 

[9]

G. CiraoloC. ChandreR. LimaM. Vittot and M. Pettini, Control of chaos in Hamiltonian systems, Celestial Mechanics and Dynamical Astronomy, 90 (2004), 3-12.  doi: 10.1007/s10569-004-6445-3.

[10]

C. Di Troia, From charge motion in general magnetic fields to the non perturbative gyrokinetic equation, Physics of Plasmas, 22 (2015), 042103. 

[11]

D. F. Escande, Contributions of plasma physics to chaos and nonlinear dynamics, Plasma Physics and Controlled Fusion, 58 (2016), 113001. 

[12]

J.-Ll. FiguerasA. Haro and A. Luque, Rigorous computer-assisted application of KAM theory: A modern approach, Found. Comput. Math., 17 (2017), 1123-1193.  doi: 10.1007/s10208-016-9339-3.

[13]

F. GabernA. Jorba and U. Locatelli, On the construction of the Kolmogorov normal form for the Trojan asteroids, Nonlinearity, 18 (2005), 1705-1734.  doi: 10.1088/0951-7715/18/4/017.

[14]

A. Giorgilli and U. Locatelli, Kolmogorov theorem and classical perturbation theory, Z. Angew. Math. Phys., 48 (1997), 220-261.  doi: 10.1007/PL00001475.

[15]

A. Giorgilli and U. Locatelli, On classical series expansions for quasi-periodic motions, MPEJ, 3 (1997), Paper 5, 25 pp.

[16]

A. GiorgilliU. Locatelli and M. Sansottera, Kolmogorov and Nekhoroshev theory for the problem of three bodies, Celestial Mech. Dynam. Astronom., 104 (2009), 159-173.  doi: 10.1007/s10569-009-9192-7.

[17]

A. GiorgilliU. Locatelli and M. Sansottera, Secular dynamics of a planar model of the Sun-Jupiter-Saturn-Uranus system; effective stability in the light of Kolmogorov and Nekhoroshev theories, Regul. Chaotic Dyn., 22 (2017), 54-77.  doi: 10.1134/S156035471701004X.

[18]

A. Giorgilli and M. Sansottera, Methods of algebraic manipulation in perturbation theory, Workshop Series of the Asociacion Argentina de Astronomia, (2011), 147–183.

[19]

R. D. Hazeltine and J. D. Meiss, Plasma Confinement, Addison-Wesley Publishing Company, 2003.

[20]

S. Kim and S. Östlund, Simultaneous rational approximations in the study of dynamical systems, Physical Review A, 34 (1986), 3426-3434.  doi: 10.1103/PhysRevA.34.3426.

[21]

J. Laskar, Introduction to frequency map analysis, In Hamiltonian Systems with Three or More Degrees of Freedom (editor C. Simó), NATO ASI Series, 134–150. Springer Netherlands, Dordrecht, 1999.

[22]

E. Lega and C. Froeschlé, Numerical investigations of the structure around an invariant KAM torus using the frequency map analysis, Physica D: Nonlinear Phenomena, 95 (1996), 97-106.  doi: 10.1016/0167-2789(96)00046-2.

[23]

U. Locatelli and A. Giorgilli, Invariant tori in the secular motions of the three-body planetary systems, Celestial Mechanics and Dynamical Astronomy, 78 (2000), 47-74.  doi: 10.1023/A:1011139523256.

[24]

R. S. MacKay and J. Stark, Locally most robust circles and boundary circles for area-preserving maps, Nonlinearity, 5 (1992), 867-888.  doi: 10.1088/0951-7715/5/4/002.

[25]

A. Morbidelli and A. Giorgilli, Superexponential stability of KAM tori, J. Statist. Phys., 78 (1995), 1607-1617.  doi: 10.1007/BF02180145.

[26]

T. Northrop, The Adiabatic Motion of Charged Particles, Interscience Publishers, Inc, 1963.

[27]

L. Stefanelli and U. Locatelli, Kolmogorov's normal form for equations of motion with dissipative effects, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2561-2593.  doi: 10.3934/dcdsb.2012.17.2561.

[28]

M. Vittot, Perturbation theory and control in classical or quantum mechanics by an inversion formula, Journal of Physics A: Mathematical and General, 37 (2004), 6337-6357.  doi: 10.1088/0305-4470/37/24/011.

[29]

M. VittotC. ChandreG. Ciraolo and R. Lima, Localised control for non-resonant Hamiltonian systems, Nonlinearity, 18 (2005), 423-440.  doi: 10.1088/0951-7715/18/1/021.

show all references

References:
[1]

S. S. Abdullaev, Construction of Mappings for Hamiltonian Systems and Their Applications, Lecture Notes in Physics. Spinger, Berlin Heidelberg, 2006.

[2]

P. M. Bellan, Fundamentals of Plasma Physics, Cambridge University Press, July 2008.

[3]

G. BenettinL. GalganiA. Giorgilli and J.-M. Strelcyn, A proof of Kolmogorov's theorem on invariant tori using canonical transformations defined by the Lie method, Nuovo Cimento B, 79 (1984), 201-223.  doi: 10.1007/BF02748972.

[4]

C. Caracciolo and U. Locatelli, Computer-assisted estimates for Birkhoff normal forms, J. Comput. Dyn., 7 (2020), 425-460.  doi: 10.3934/jcd.2020017.

[5]

A. Carati, M. Zuin, A. Maiocchi, M. Marino, E. Martines and L. Galgani, Transition from order to chaos, and density limit, in magnetized plasmas, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22 (2012), 033124, 7 pp. doi: 10.1063/1.4745851.

[6]

A. CellettiA. Giorgilli and U. Locatelli, Improved estimates on the existence of invariant tori for Hamiltonian systems, Nonlinearity, 13 (2000), 397-412.  doi: 10.1088/0951-7715/13/2/304.

[7]

C. ChandreM. VittotG. CiraoloP. Ghendrih and R. Lima, Control of stochasticity in magnetic field lines, Nuclear Fusion, 46 (2006), 33-45. 

[8]

G. CiraoloF. BriolleC. ChandreE. FlorianiR. LimaM. VittotM. PettiniC. Figarella and P. Ghendrih, Control of Hamiltonian chaos as a possible tool to control anomalous transport in fusion plasmas, Physical Review E, 69 (2004), 056213. 

[9]

G. CiraoloC. ChandreR. LimaM. Vittot and M. Pettini, Control of chaos in Hamiltonian systems, Celestial Mechanics and Dynamical Astronomy, 90 (2004), 3-12.  doi: 10.1007/s10569-004-6445-3.

[10]

C. Di Troia, From charge motion in general magnetic fields to the non perturbative gyrokinetic equation, Physics of Plasmas, 22 (2015), 042103. 

[11]

D. F. Escande, Contributions of plasma physics to chaos and nonlinear dynamics, Plasma Physics and Controlled Fusion, 58 (2016), 113001. 

[12]

J.-Ll. FiguerasA. Haro and A. Luque, Rigorous computer-assisted application of KAM theory: A modern approach, Found. Comput. Math., 17 (2017), 1123-1193.  doi: 10.1007/s10208-016-9339-3.

[13]

F. GabernA. Jorba and U. Locatelli, On the construction of the Kolmogorov normal form for the Trojan asteroids, Nonlinearity, 18 (2005), 1705-1734.  doi: 10.1088/0951-7715/18/4/017.

[14]

A. Giorgilli and U. Locatelli, Kolmogorov theorem and classical perturbation theory, Z. Angew. Math. Phys., 48 (1997), 220-261.  doi: 10.1007/PL00001475.

[15]

A. Giorgilli and U. Locatelli, On classical series expansions for quasi-periodic motions, MPEJ, 3 (1997), Paper 5, 25 pp.

[16]

A. GiorgilliU. Locatelli and M. Sansottera, Kolmogorov and Nekhoroshev theory for the problem of three bodies, Celestial Mech. Dynam. Astronom., 104 (2009), 159-173.  doi: 10.1007/s10569-009-9192-7.

[17]

A. GiorgilliU. Locatelli and M. Sansottera, Secular dynamics of a planar model of the Sun-Jupiter-Saturn-Uranus system; effective stability in the light of Kolmogorov and Nekhoroshev theories, Regul. Chaotic Dyn., 22 (2017), 54-77.  doi: 10.1134/S156035471701004X.

[18]

A. Giorgilli and M. Sansottera, Methods of algebraic manipulation in perturbation theory, Workshop Series of the Asociacion Argentina de Astronomia, (2011), 147–183.

[19]

R. D. Hazeltine and J. D. Meiss, Plasma Confinement, Addison-Wesley Publishing Company, 2003.

[20]

S. Kim and S. Östlund, Simultaneous rational approximations in the study of dynamical systems, Physical Review A, 34 (1986), 3426-3434.  doi: 10.1103/PhysRevA.34.3426.

[21]

J. Laskar, Introduction to frequency map analysis, In Hamiltonian Systems with Three or More Degrees of Freedom (editor C. Simó), NATO ASI Series, 134–150. Springer Netherlands, Dordrecht, 1999.

[22]

E. Lega and C. Froeschlé, Numerical investigations of the structure around an invariant KAM torus using the frequency map analysis, Physica D: Nonlinear Phenomena, 95 (1996), 97-106.  doi: 10.1016/0167-2789(96)00046-2.

[23]

U. Locatelli and A. Giorgilli, Invariant tori in the secular motions of the three-body planetary systems, Celestial Mechanics and Dynamical Astronomy, 78 (2000), 47-74.  doi: 10.1023/A:1011139523256.

[24]

R. S. MacKay and J. Stark, Locally most robust circles and boundary circles for area-preserving maps, Nonlinearity, 5 (1992), 867-888.  doi: 10.1088/0951-7715/5/4/002.

[25]

A. Morbidelli and A. Giorgilli, Superexponential stability of KAM tori, J. Statist. Phys., 78 (1995), 1607-1617.  doi: 10.1007/BF02180145.

[26]

T. Northrop, The Adiabatic Motion of Charged Particles, Interscience Publishers, Inc, 1963.

[27]

L. Stefanelli and U. Locatelli, Kolmogorov's normal form for equations of motion with dissipative effects, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2561-2593.  doi: 10.3934/dcdsb.2012.17.2561.

[28]

M. Vittot, Perturbation theory and control in classical or quantum mechanics by an inversion formula, Journal of Physics A: Mathematical and General, 37 (2004), 6337-6357.  doi: 10.1088/0305-4470/37/24/011.

[29]

M. VittotC. ChandreG. Ciraolo and R. Lima, Localised control for non-resonant Hamiltonian systems, Nonlinearity, 18 (2005), 423-440.  doi: 10.1088/0951-7715/18/1/021.

Figure 1.  Phase portraits given by the time-$ 2\pi $ mappings for the Hamiltonian $ H+v+f $ (see equations (2), (3), (10)). The equations of motion were numerically integrated by using a leap-frog method in the case with $ \varepsilon = 0.003 $
Figure 2.  Two FAMs for the Hamiltonian system corresponding to the Hamiltonians $ H+v $ (on the left) and $ H+v+f $ (see equations (2), (3) and (10)), for $ \varepsilon = 0.0012 $. In both cases we chose 200 equidistributed values of $ \psi_0 $, and for each of them we run a simulation of $ (2^{15}+1) $ perturbation periods. The initial values of the variables $ \theta $ and $ \varphi $ were always set to $ 0 $. The equations of motion were solved by a symmetric splitting method of order two
Figure 3.  The action-frequency map for the system $ H+v+f $ at different values of $ \varepsilon $, in the region where the KAM tori appeared as a consequence of the control term. For each value of $ \varepsilon $ we numerically computed $ 150 $ trajectories of $ (2^{15}+1) $ perturbation periods
Figure 4.  Action-frequency map analysis for a region of phase space of the system $ H+f $ filled with invariant tori, for $ \varepsilon = 0.004 $. The graphics is made of $ 200 $ points. For each point we run a simulation of $ (2^{16}+1) $ perturbation periods
Figure 5.  Decay of the norms of the terms appearing in the expansion (61) of $ H^{(0)} $, that is defined in formulæ (62)–(63)
[1]

Chiara Caracciolo, Ugo Locatelli. Computer-assisted estimates for Birkhoff normal forms. Journal of Computational Dynamics, 2020, 7 (2) : 425-460. doi: 10.3934/jcd.2020017

[2]

Maxime Breden, Jean-Philippe Lessard. Polynomial interpolation and a priori bootstrap for computer-assisted proofs in nonlinear ODEs. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2825-2858. doi: 10.3934/dcdsb.2018164

[3]

István Balázs, Jan Bouwe van den Berg, Julien Courtois, János Dudás, Jean-Philippe Lessard, Anett Vörös-Kiss, JF Williams, Xi Yuan Yin. Computer-assisted proofs for radially symmetric solutions of PDEs. Journal of Computational Dynamics, 2018, 5 (1&2) : 61-80. doi: 10.3934/jcd.2018003

[4]

Thomas Wanner. Computer-assisted equilibrium validation for the diblock copolymer model. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 1075-1107. doi: 10.3934/dcds.2017045

[5]

Maciej J. Capiński, Emmanuel Fleurantin, J. D. Mireles James. Computer assisted proofs of two-dimensional attracting invariant tori for ODEs. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6681-6707. doi: 10.3934/dcds.2020162

[6]

A. Aschwanden, A. Schulze-Halberg, D. Stoffer. Stable periodic solutions for delay equations with positive feedback - a computer-assisted proof. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 721-736. doi: 10.3934/dcds.2006.14.721

[7]

Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2141-2160. doi: 10.3934/dcds.2017092

[8]

Ricardo Miranda Martins. Formal equivalence between normal forms of reversible and hamiltonian dynamical systems. Communications on Pure and Applied Analysis, 2014, 13 (2) : 703-713. doi: 10.3934/cpaa.2014.13.703

[9]

Piotr Zgliczyński. Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof. Journal of Computational Dynamics, 2015, 2 (1) : 95-142. doi: 10.3934/jcd.2015.2.95

[10]

Marian Gidea, Rafael De La Llave. Topological methods in the instability problem of Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 295-328. doi: 10.3934/dcds.2006.14.295

[11]

Roman Šimon Hilscher. On general Sturmian theory for abnormal linear Hamiltonian systems. Conference Publications, 2011, 2011 (Special) : 684-691. doi: 10.3934/proc.2011.2011.684

[12]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[13]

Michel Duprez, Guillaume Olive. Compact perturbations of controlled systems. Mathematical Control and Related Fields, 2018, 8 (2) : 397-410. doi: 10.3934/mcrf.2018016

[14]

Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363

[15]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

[16]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[17]

Kaizhi Wang, Lin Wang, Jun Yan. Aubry-Mather theory for contact Hamiltonian systems II. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 555-595. doi: 10.3934/dcds.2021128

[18]

Andrea Davini, Maxime Zavidovique. Weak KAM theory for nonregular commuting Hamiltonians. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 57-94. doi: 10.3934/dcdsb.2013.18.57

[19]

Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 75-113. doi: 10.3934/dcds.2019004

[20]

Virginie De Witte, Willy Govaerts. Numerical computation of normal form coefficients of bifurcations of odes in MATLAB. Conference Publications, 2011, 2011 (Special) : 362-372. doi: 10.3934/proc.2011.2011.362

 Impact Factor: 

Metrics

  • PDF downloads (182)
  • HTML views (144)
  • Cited by (0)

Other articles
by authors

[Back to Top]