
Previous Article
Collective attention and ranking methods
 JDG Home
 This Issue
 Next Article
Bioinspired paradigms in network engineering games
1.  INRIA SophiaAntipolis, 2004 Route des Lucioles, 06906, SophiaAntipolis, France 
References:
[1] 
T. Alpcan and T. Başar, "Network Security. A Decision and GameTheoretic Approach," Cambridge University Press, Cambridge, 2011. 
[2] 
E. Altman, "Constrained Markov Decision Processes. Stochastic Modeling," Chapman & Hall/CRC, Boca Raton, FL, 1999. 
[3] 
E. Altman, R. El Azouzi and V. Abramov, Noncooperative routing in loss networks, Performance Evaluation, 49 (2002), 257272. doi: 10.1016/S01665316(02)001128. 
[4] 
E. Altman, T. Boulogne, R. ElAzouzi, T. Jiménez and L. Wynter, A survey on networking games in telecommunications, Computers and Operations Research, 33 (2006), 286311. doi: 10.1016/j.cor.2004.06.005. 
[5] 
E. Altman and R. ElAzouzi, La théorie des jeux noncoopératifs appliquée aux réseaux de télécommunication, (in French) Annales des Télécommunications, (2007). 
[6] 
E. Altman and L. Wynter, Equilibrium, games, and pricing in transportation and telecommunications networks, Networks and Spatial Economics, 4 (2004), 721. doi: 10.1023/B:NETS.0000015653.52983.61. 
[7] 
Eitan Altman, A stochastic game approach for competition over popularity in social networks, Dynamic Games and Applications, online publication, (2012). Available from: http://hal.inria.fr/hal00681959. doi: 10.1007/s1323501200574. 
[8] 
Eitan Altman and Yezekael Hayel, Markov decision evolutionary games, IEEE Transactions on Automatic Control, 55 (2010), 15601569. doi: 10.1109/TAC.2010.2042230. 
[9] 
J. Aspnes, K. Chang and A. Yampolskiy, Inoculation strategies for victims of viruses and the sumofsquares partition problem, J. Comput. Syst. Sci., 72 (2006), 10771093. doi: 10.1016/j.jcss.2006.02.003. 
[10] 
J. Aspnes, N. Rustagi and J. Saia, Worm versus alert: Who wins in a battle for control of a largescale network?, Lecture Notes in Computer Science, 4878 (2007), 443456. doi: 10.1007/9783540770961_32. 
[11] 
C. T. Bauch, Imitation dynamics predict vaccinating behavior, Proc. of The Royal Society, (2005). doi: 10.1098/rspb.2005.3153. 
[12] 
C. T. Bauch and D. J. D. Earn, Vaccination and the theory of games, Proceedings of the National Academy of Science, 101 (2004), 1339113394. doi: 10.1073/pnas.0403823101. 
[13] 
N. G. Beans, F. P. Kelly and P. G. Taylor, Braess's paradox in a loss network, J. Appl. Prob., 34 (1997), 155159. doi: 10.2307/3215183. 
[14] 
M. Beckmann, C. B. McGuire and C. B. Winsten, "Studies in the Economics of Transportation," Yale Univ. Press, New Haven, 1956. 
[15] 
T. Berger, The source coding game, IEEE Trans. on Inform. Theory, IT17 (1971), 7176. 
[16] 
N. M. Blachman, Communication as a game, in "I.R.E. WESCON Convention Record Part 2" (August 1957), 6166. 
[17] 
D. Braess, Über ein Paradoxien aus der Verkehrsplanung, (German) Unternehmensforschung, 12 (1968), 258268. 
[18] 
Mung Chiang, Chee Wei Tan, Prashanth Hande and Tian Lan, Power control in wireless cellular networks, Foundations and Trends in Networking, 2 (2007), 381533. doi: 10.1561/1300000009. 
[19] 
S. Coraluppi and S. I. Marcus, Risksensitive queueing, in "Proc. 35^{th} Annual Allerton Conf. on Communication, Control, and Computing," Urbana, IL, USA, September 28October 1, 1997. 
[20] 
Merouane Debbah and Samson Lasaulce, "Game Theory for Wireless Networks: From Fundamentals to Practice," Elsevier Science & Technology, 2011. 
[21] 
C. Douligeris, "Optimal Flow Control and Fairness in Communication Networks: A Game Theoretic Perspective," Ph.D. Dissertation, Electrical Engineering, Columbia University, 1989. 
[22] 
T. Ericson, The noncooperative binary adder channel, IEEE Trans. on Inform. Theory, 32 (1986), 365374. doi: 10.1109/TIT.1986.1057190. 
[23] 
D. Falomari, N. Mandayam and D. Goodman, A new framework for power control in wireless data networks: Games utility and pricing, in "Proc. Allerton Conference on Communication, Control and Computing," Champaign, Illinois, USA, (1998), 546555. 
[24] 
C. Frenzel, H. Sanneck and S. Hamalainen, "LTE SelfOrganising Networks (Son): Network Management Automation for Operational Efficiency," John Wiley & Sons, 2011. 
[25] 
A. Haurie and P. Marcotte, On the relationship between NashCournot and Wardrop equilibria, Networks, 15 (1985), 295308. doi: 10.1002/net.3230150303. 
[26] 
M. T. Hsiao and A. A. Lazar, A game theoretic approach to decentralized flow control of Markovian queueing networks, in "Performance '87" (Brussels, 1987), NorthHolland, Amsterdam, (1988), 5573. 
[27] 
M. T. Hsiao and A. A. Lazar, Optimal decentralized flow control of Markovian queueing networks with multiple controllers, Performance Evaluation, 13 (1991), 181204. doi: 10.1016/01665316(91)900547. 
[28] 
M. H. R. Khouzani, Saswati Sarkar and Eitan Altman, Saddlepoint strategies in malware attack, IEEE Journal on Selected Areas in Communications, 30 (2012), 3143. doi: 10.1109/JSAC.2012.120104. 
[29] 
ManTung Tony Hsiao, "Optimal Decentralized Flow Control in Computer Communication Networks," Ph.D. Thesis, EE, Columbia Univ, October, 1986. 
[30] 
Anna Jaśkiewicz, A note on negative dynamic programming for risksensitive control, Operations Research Letters, 36 (2008), 531534. doi: 10.1016/j.orl.2008.03.003. 
[31] 
Hongbin Ji and ChingYao Huang, Noncooperative uplink power control in cellular radio systems, Wireless Networks, 4 (1998), 233240. 
[32] 
B. Jovanovic and R. W. Rosenthal, Anonymous sequential games, Journal of Mathematical Economics, 17 (1988), 7787. doi: 10.1016/03044068(88)900298. 
[33] 
S. Lasaulce and H. Tembine, "Game Theory and Learning for Wireless Networks," Fundamentals and Applications, Academic Press, 2011. 
[34] 
S. A. Lippman, Applying a new device in the optimization of exponential queueing systems, Operations Research, 23 (1975), 687710. doi: 10.1287/opre.23.4.687. 
[35] 
Allen Mackenzie and Luiz DaSilva, "Game Theory for Wireless Engineers," Synthesis Lectures on Communications, Morgan & Claypool Publishers, 2006. doi: 10.2200/S00014ED1V01Y200508COM001. 
[36] 
R. Mazumdar, L. G. Mason and C. Douligeris, Fairness in network optimal flow control: Optimality of product forms, IEEE Trans. on Comm., 39 (1991), 775782. doi: 10.1109/26.87140. 
[37] 
I. Menache and A. Ozdaglar, "Network Games: Theory, Models, and Dynamics," Synthesis Lectures on Communication Networks, Morgan & Claypool Publishers, 2011. doi: 10.2200/S00330ED1V01Y201101CNT009. 
[38] 
I. Milchtaich, Congestion games with playerspecific payoff functions, Games and Economic Behavior, 13 (1996), 111124. doi: 10.1006/game.1996.0027. 
[39] 
W. Murrey, The application of epidemiology to computer viruses, Comp. Security, 7 (1988), 139150. 
[40] 
Noam Nisan, Tim Roughgarden, Éva Tardos and Vijay V. Vazirani, eds., "Algorithmic Game Theory," Cambridge University Press, Cambridge, 2007. doi: 10.1017/CBO9780511800481. 
[41] 
A. Orda, R. Rom and N. Shimkin, Competitive routing in multiuser communication networks, in "INFOCOM '93. Proceedings. Twelfth Annual Joint Conference of the IEEE Computer and Communications Societies. Networking: Foundation for the Future" (San Francisco, CA), IEEE, (1993), 964971. doi: 10.1109/INFCOM.1993.253270. 
[42] 
M. Patriksson, "The Traffic Assignment Problem: Models and Methods," VSP BV, P.O. Box 346, 3700 AH Zeist, The Netherlands, 1994. 
[43] 
R. W. Rosenthal, A class of games possessing pure strategy Nash equilibria, Int. J. Game Theory, 2 (1973), 6567. doi: 10.1007/BF01737559. 
[44] 
R. W. Rosenthal, The network equilibrium problem in integers, Networks, 3 (1973), 5359. doi: 10.1002/net.3230030104. 
[45] 
William H. Sandholm, "Population Games and Evolutionary Dynamics," Economic Learning and Social Evolution, MIT Press, Cambridge, MA, 2010. 
[46] 
J. Maynard Smith, Game theory and the evolution of fighting, in "On Evolution" (J. Maynard Smith), Edinburgh University Press, Edinburgh, (1972), 828. 
[47] 
Hamidou Tembine, Eitan Altman, Rachid ElAzouzi and Yezekael Hayel, Evolutionary games in wireless networks, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 40 (2010), 634646. doi: 10.1109/TSMCB.2009.2034631. 
[48] 
Hamidou Tembine, Eitan Altman, Rachid ElAzouzi and Yezekael Hayel, Bioinspired delayed evolutionary game dynamics with networking applications, Telecommunication Systems, 47 (2011), 137152. doi: 10.1007/s1123501093071. 
[49] 
D. C. Trimble, "A GameTheoretic Approach to Signal and Receiver Design," Ph.D. Thesis, Nov. 1972. doi: 10.1109/TIT.1972.1054913. 
[50] 
T. L. Vincent and J. S. Brown, "Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics," Cambridge Univ Press, 2005. 
[51] 
J. G. Wardrop, Some theoretical aspects of road traffic research communication networks, Proc. Inst. Civ. Eng., Part 2, 1 (1952), 325378. 
[52] 
Y. Zhang and M. Guizani, "Game Theory for Wireless Commun. and Networking," CRC, 2011. 
[53] 
Yan Zhang and Mohsen Guizani, "Game Theory for Wireless Communications and Networking," Taylor and Francis, 2010. 
[54] 
I. Ziedins, A paradox in a queueing network with statedependent routing and loss, Journal of Applied Mathematics and Decision Sciences, 2007 (2007), Article ID 68280, 10 pp. doi: 10.1155/2007/68280. 
show all references
References:
[1] 
T. Alpcan and T. Başar, "Network Security. A Decision and GameTheoretic Approach," Cambridge University Press, Cambridge, 2011. 
[2] 
E. Altman, "Constrained Markov Decision Processes. Stochastic Modeling," Chapman & Hall/CRC, Boca Raton, FL, 1999. 
[3] 
E. Altman, R. El Azouzi and V. Abramov, Noncooperative routing in loss networks, Performance Evaluation, 49 (2002), 257272. doi: 10.1016/S01665316(02)001128. 
[4] 
E. Altman, T. Boulogne, R. ElAzouzi, T. Jiménez and L. Wynter, A survey on networking games in telecommunications, Computers and Operations Research, 33 (2006), 286311. doi: 10.1016/j.cor.2004.06.005. 
[5] 
E. Altman and R. ElAzouzi, La théorie des jeux noncoopératifs appliquée aux réseaux de télécommunication, (in French) Annales des Télécommunications, (2007). 
[6] 
E. Altman and L. Wynter, Equilibrium, games, and pricing in transportation and telecommunications networks, Networks and Spatial Economics, 4 (2004), 721. doi: 10.1023/B:NETS.0000015653.52983.61. 
[7] 
Eitan Altman, A stochastic game approach for competition over popularity in social networks, Dynamic Games and Applications, online publication, (2012). Available from: http://hal.inria.fr/hal00681959. doi: 10.1007/s1323501200574. 
[8] 
Eitan Altman and Yezekael Hayel, Markov decision evolutionary games, IEEE Transactions on Automatic Control, 55 (2010), 15601569. doi: 10.1109/TAC.2010.2042230. 
[9] 
J. Aspnes, K. Chang and A. Yampolskiy, Inoculation strategies for victims of viruses and the sumofsquares partition problem, J. Comput. Syst. Sci., 72 (2006), 10771093. doi: 10.1016/j.jcss.2006.02.003. 
[10] 
J. Aspnes, N. Rustagi and J. Saia, Worm versus alert: Who wins in a battle for control of a largescale network?, Lecture Notes in Computer Science, 4878 (2007), 443456. doi: 10.1007/9783540770961_32. 
[11] 
C. T. Bauch, Imitation dynamics predict vaccinating behavior, Proc. of The Royal Society, (2005). doi: 10.1098/rspb.2005.3153. 
[12] 
C. T. Bauch and D. J. D. Earn, Vaccination and the theory of games, Proceedings of the National Academy of Science, 101 (2004), 1339113394. doi: 10.1073/pnas.0403823101. 
[13] 
N. G. Beans, F. P. Kelly and P. G. Taylor, Braess's paradox in a loss network, J. Appl. Prob., 34 (1997), 155159. doi: 10.2307/3215183. 
[14] 
M. Beckmann, C. B. McGuire and C. B. Winsten, "Studies in the Economics of Transportation," Yale Univ. Press, New Haven, 1956. 
[15] 
T. Berger, The source coding game, IEEE Trans. on Inform. Theory, IT17 (1971), 7176. 
[16] 
N. M. Blachman, Communication as a game, in "I.R.E. WESCON Convention Record Part 2" (August 1957), 6166. 
[17] 
D. Braess, Über ein Paradoxien aus der Verkehrsplanung, (German) Unternehmensforschung, 12 (1968), 258268. 
[18] 
Mung Chiang, Chee Wei Tan, Prashanth Hande and Tian Lan, Power control in wireless cellular networks, Foundations and Trends in Networking, 2 (2007), 381533. doi: 10.1561/1300000009. 
[19] 
S. Coraluppi and S. I. Marcus, Risksensitive queueing, in "Proc. 35^{th} Annual Allerton Conf. on Communication, Control, and Computing," Urbana, IL, USA, September 28October 1, 1997. 
[20] 
Merouane Debbah and Samson Lasaulce, "Game Theory for Wireless Networks: From Fundamentals to Practice," Elsevier Science & Technology, 2011. 
[21] 
C. Douligeris, "Optimal Flow Control and Fairness in Communication Networks: A Game Theoretic Perspective," Ph.D. Dissertation, Electrical Engineering, Columbia University, 1989. 
[22] 
T. Ericson, The noncooperative binary adder channel, IEEE Trans. on Inform. Theory, 32 (1986), 365374. doi: 10.1109/TIT.1986.1057190. 
[23] 
D. Falomari, N. Mandayam and D. Goodman, A new framework for power control in wireless data networks: Games utility and pricing, in "Proc. Allerton Conference on Communication, Control and Computing," Champaign, Illinois, USA, (1998), 546555. 
[24] 
C. Frenzel, H. Sanneck and S. Hamalainen, "LTE SelfOrganising Networks (Son): Network Management Automation for Operational Efficiency," John Wiley & Sons, 2011. 
[25] 
A. Haurie and P. Marcotte, On the relationship between NashCournot and Wardrop equilibria, Networks, 15 (1985), 295308. doi: 10.1002/net.3230150303. 
[26] 
M. T. Hsiao and A. A. Lazar, A game theoretic approach to decentralized flow control of Markovian queueing networks, in "Performance '87" (Brussels, 1987), NorthHolland, Amsterdam, (1988), 5573. 
[27] 
M. T. Hsiao and A. A. Lazar, Optimal decentralized flow control of Markovian queueing networks with multiple controllers, Performance Evaluation, 13 (1991), 181204. doi: 10.1016/01665316(91)900547. 
[28] 
M. H. R. Khouzani, Saswati Sarkar and Eitan Altman, Saddlepoint strategies in malware attack, IEEE Journal on Selected Areas in Communications, 30 (2012), 3143. doi: 10.1109/JSAC.2012.120104. 
[29] 
ManTung Tony Hsiao, "Optimal Decentralized Flow Control in Computer Communication Networks," Ph.D. Thesis, EE, Columbia Univ, October, 1986. 
[30] 
Anna Jaśkiewicz, A note on negative dynamic programming for risksensitive control, Operations Research Letters, 36 (2008), 531534. doi: 10.1016/j.orl.2008.03.003. 
[31] 
Hongbin Ji and ChingYao Huang, Noncooperative uplink power control in cellular radio systems, Wireless Networks, 4 (1998), 233240. 
[32] 
B. Jovanovic and R. W. Rosenthal, Anonymous sequential games, Journal of Mathematical Economics, 17 (1988), 7787. doi: 10.1016/03044068(88)900298. 
[33] 
S. Lasaulce and H. Tembine, "Game Theory and Learning for Wireless Networks," Fundamentals and Applications, Academic Press, 2011. 
[34] 
S. A. Lippman, Applying a new device in the optimization of exponential queueing systems, Operations Research, 23 (1975), 687710. doi: 10.1287/opre.23.4.687. 
[35] 
Allen Mackenzie and Luiz DaSilva, "Game Theory for Wireless Engineers," Synthesis Lectures on Communications, Morgan & Claypool Publishers, 2006. doi: 10.2200/S00014ED1V01Y200508COM001. 
[36] 
R. Mazumdar, L. G. Mason and C. Douligeris, Fairness in network optimal flow control: Optimality of product forms, IEEE Trans. on Comm., 39 (1991), 775782. doi: 10.1109/26.87140. 
[37] 
I. Menache and A. Ozdaglar, "Network Games: Theory, Models, and Dynamics," Synthesis Lectures on Communication Networks, Morgan & Claypool Publishers, 2011. doi: 10.2200/S00330ED1V01Y201101CNT009. 
[38] 
I. Milchtaich, Congestion games with playerspecific payoff functions, Games and Economic Behavior, 13 (1996), 111124. doi: 10.1006/game.1996.0027. 
[39] 
W. Murrey, The application of epidemiology to computer viruses, Comp. Security, 7 (1988), 139150. 
[40] 
Noam Nisan, Tim Roughgarden, Éva Tardos and Vijay V. Vazirani, eds., "Algorithmic Game Theory," Cambridge University Press, Cambridge, 2007. doi: 10.1017/CBO9780511800481. 
[41] 
A. Orda, R. Rom and N. Shimkin, Competitive routing in multiuser communication networks, in "INFOCOM '93. Proceedings. Twelfth Annual Joint Conference of the IEEE Computer and Communications Societies. Networking: Foundation for the Future" (San Francisco, CA), IEEE, (1993), 964971. doi: 10.1109/INFCOM.1993.253270. 
[42] 
M. Patriksson, "The Traffic Assignment Problem: Models and Methods," VSP BV, P.O. Box 346, 3700 AH Zeist, The Netherlands, 1994. 
[43] 
R. W. Rosenthal, A class of games possessing pure strategy Nash equilibria, Int. J. Game Theory, 2 (1973), 6567. doi: 10.1007/BF01737559. 
[44] 
R. W. Rosenthal, The network equilibrium problem in integers, Networks, 3 (1973), 5359. doi: 10.1002/net.3230030104. 
[45] 
William H. Sandholm, "Population Games and Evolutionary Dynamics," Economic Learning and Social Evolution, MIT Press, Cambridge, MA, 2010. 
[46] 
J. Maynard Smith, Game theory and the evolution of fighting, in "On Evolution" (J. Maynard Smith), Edinburgh University Press, Edinburgh, (1972), 828. 
[47] 
Hamidou Tembine, Eitan Altman, Rachid ElAzouzi and Yezekael Hayel, Evolutionary games in wireless networks, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 40 (2010), 634646. doi: 10.1109/TSMCB.2009.2034631. 
[48] 
Hamidou Tembine, Eitan Altman, Rachid ElAzouzi and Yezekael Hayel, Bioinspired delayed evolutionary game dynamics with networking applications, Telecommunication Systems, 47 (2011), 137152. doi: 10.1007/s1123501093071. 
[49] 
D. C. Trimble, "A GameTheoretic Approach to Signal and Receiver Design," Ph.D. Thesis, Nov. 1972. doi: 10.1109/TIT.1972.1054913. 
[50] 
T. L. Vincent and J. S. Brown, "Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics," Cambridge Univ Press, 2005. 
[51] 
J. G. Wardrop, Some theoretical aspects of road traffic research communication networks, Proc. Inst. Civ. Eng., Part 2, 1 (1952), 325378. 
[52] 
Y. Zhang and M. Guizani, "Game Theory for Wireless Commun. and Networking," CRC, 2011. 
[53] 
Yan Zhang and Mohsen Guizani, "Game Theory for Wireless Communications and Networking," Taylor and Francis, 2010. 
[54] 
I. Ziedins, A paradox in a queueing network with statedependent routing and loss, Journal of Applied Mathematics and Decision Sciences, 2007 (2007), Article ID 68280, 10 pp. doi: 10.1155/2007/68280. 
[1] 
Andrew P. Sage. Risk in system of systems engineering and management. Journal of Industrial and Management Optimization, 2008, 4 (3) : 477487. doi: 10.3934/jimo.2008.4.477 
[2] 
Maide Bucolo, Federica Di Grazia, Luigi Fortuna, Mattia Frasca, Francesca Sapuppo. An environment for complex behaviour detection in biopotential experiments. Mathematical Biosciences & Engineering, 2008, 5 (2) : 261276. doi: 10.3934/mbe.2008.5.261 
[3] 
Caixia Gao, Enmin Feng, Zongtao Wang, Zhilong Xiu. Nonlinear dynamical systems of biodissimilation of glycerol to 1,3propanediol and their optimal controls. Journal of Industrial and Management Optimization, 2005, 1 (3) : 377388. doi: 10.3934/jimo.2005.1.377 
[4] 
Aniello Buonocore, Antonio Di Crescenzo, Alan Hastings. Preface for the special issue of Mathematical Biosciences and Engineering, BIOCOMP 2012. Mathematical Biosciences & Engineering, 2014, 11 (2) : iii. doi: 10.3934/mbe.2014.11.2i 
[5] 
Mohamed A. Tawhid, Ahmed F. Ali. An effective hybrid firefly algorithm with the cuckoo search for engineering optimization problems. Mathematical Foundations of Computing, 2018, 1 (4) : 349368. doi: 10.3934/mfc.2018017 
[6] 
Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial and Management Optimization, 2022, 18 (4) : 23192334. doi: 10.3934/jimo.2021069 
[7] 
Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained statelinear variational problems inspired by impulsive control. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 201210. doi: 10.3934/naco.2017014 
[8] 
Sen Zhang, Guo Zhou, Yongquan Zhou, Qifang Luo. Quantuminspired satin bowerbird algorithm with Bloch spherical search for constrained structural optimization. Journal of Industrial and Management Optimization, 2021, 17 (6) : 35093523. doi: 10.3934/jimo.2020130 
[9] 
Adrian Korban, Serap Şahinkaya, Deniz Ustun. A novel genetic search scheme based on natureinspired evolutionary algorithms for binary selfdual codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022033 
[10] 
Georgios Konstantinidis. A game theoretic analysis of the cops and robber game. Journal of Dynamics and Games, 2014, 1 (4) : 599619. doi: 10.3934/jdg.2014.1.599 
[11] 
Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics and Games, 2014, 1 (3) : 537553. doi: 10.3934/jdg.2014.1.537 
[12] 
Jiahua Zhang, ShuCherng Fang, Yifan Xu, Ziteng Wang. A cooperative game with envy. Journal of Industrial and Management Optimization, 2017, 13 (4) : 20492066. doi: 10.3934/jimo.2017031 
[13] 
Ying Ji, Shaojian Qu, Fuxing Chen. Environmental game modeling with uncertainties. Discrete and Continuous Dynamical Systems  S, 2019, 12 (4&5) : 9891003. doi: 10.3934/dcdss.2019067 
[14] 
Harish Garg. Solving structural engineering design optimization problems using an artificial bee colony algorithm. Journal of Industrial and Management Optimization, 2014, 10 (3) : 777794. doi: 10.3934/jimo.2014.10.777 
[15] 
Inmaculada Antón, Julián LópezGómez. Global bifurcation diagrams of steadystates for a parabolic model related to a nuclear engineering problem. Conference Publications, 2013, 2013 (special) : 2130. doi: 10.3934/proc.2013.2013.21 
[16] 
Ruiheng Cai, Fengkuang Chiang. A lasercuttingcentered STEM course for improving engineering problemsolving skills of high school students in China. STEM Education, 2021, 1 (3) : 199224. doi: 10.3934/steme.2021015 
[17] 
Xin Du, M. Monir Uddin, A. Mostakim Fony, Md. Tanzim Hossain, Md. Nazmul Islam Shuzan. Iterative Rational Krylov Algorithms for model reduction of a class of constrained structural dynamic system with Engineering applications. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 481493. doi: 10.3934/naco.2021016 
[18] 
René Aïd, Roxana Dumitrescu, Peter Tankov. The entry and exit game in the electricity markets: A meanfield game approach. Journal of Dynamics and Games, 2021, 8 (4) : 331358. doi: 10.3934/jdg.2021012 
[19] 
Abbas Ja'afaru Badakaya, Aminu Sulaiman Halliru, Jamilu Adamu. Game value for a pursuitevasion differential game problem in a Hilbert space. Journal of Dynamics and Games, 2022, 9 (1) : 112. doi: 10.3934/jdg.2021019 
[20] 
David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics and Games, 2015, 2 (3&4) : 207225. doi: 10.3934/jdg.2015002 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]