-
Previous Article
Strong approachability
- JDG Home
- This Issue
-
Next Article
Local stability of strict equilibria under evolutionary game dynamics
A prequential test for exchangeable theories
1. | Kellogg School of Management, Northwestern University, Evanston, Illinois 60208, United States, United States |
References:
[1] |
N. Al-Najjar, R. Smorodinsky, A. Sandroni and J. Weinstein, Testing theories with learnable and predictive representations, Journal of Economic Theory, 145 (2010), 2203-2217.
doi: 10.1016/j.jet.2010.07.003. |
[2] |
D. Blackwell and L. Dubins, Merging of opinions with increasing information, Annals of Mathematical Statistics, 33 (1962), 882-886.
doi: 10.1214/aoms/1177704456. |
[3] |
E. Dekel and Y. Feinberg, Non-Bayesian testing of a stochastic prediction, Review of Economic Studies, 73 (2006), 893-906.
doi: 10.1111/j.1467-937X.2006.00401.x. |
[4] |
A. P. Dawid, Statistical theory: The prequential approach, Journal of the Royal Statistical Society, Series A, 147 (1984), 278-292.
doi: 10.2307/2981683. |
[5] |
K. Fan, Minimax theorems, Proceedings of the National Academy of Sciences, 39 (1953), 42-47.
doi: 10.1073/pnas.39.1.42. |
[6] |
A. Kechris, Classical Descriptive Set Theory, Springer Verlag, 1995.
doi: 10.1007/978-1-4612-4190-4. |
[7] |
E. Kalai and E. Lehrer, Weak and strong merging of opinions, J. Math. Econom., 23 (1994), 73-86.
doi: 10.1016/0304-4068(94)90037-X. |
[8] |
E. Kalai, E. Lehrer and R. Smorodinsky, Calibrated forecasting and merging, Games Econom. Behav., 29 (1999), 151-169.
doi: 10.1006/game.1998.0608. |
[9] |
D. Martin, The determinacy of Blackwell games, Journal of Symbolic Logic, 63 (1998), 1565-1581.
doi: 10.2307/2586667. |
[10] |
W. Olszewski, Calibration and Expert Testing, in Handbook of Game Theory with Economic Applications (eds. H. Petyon Young and Shmuel Zamir), Vol. IV, North Holland, 2014. |
[11] |
W. Olszewski and A. Sandroni, Manipulability of future-independent tests, Econometrica, 76 (2008), 1437-1466.
doi: 10.3982/ECTA7428. |
[12] |
W. Olszewski and A. Sandroni, Strategic manipulation of empirical tests, Mathematics of Operations Research, 34 (2009), 57-70.
doi: 10.1287/moor.1080.0347. |
[13] |
W. Olszewski and A. Sandroni, A nonmanipulable test, Annals of Statistics, 37 (2009), 1013-1039.
doi: 10.1214/08-AOS597. |
[14] |
A. Sandroni, The reproducible properties of correct forecasts, International Journal of Game Theory, 32 (2003), 151-159.
doi: 10.1007/s001820300153. |
[15] |
E. Shmaya, Many inspections are manipulable, Theoretical Economics, 3 (2008), 367-382. |
[16] |
S. Sorin, Merging, reputation, and repeated games with incomplete information, Games Econom. Behav., 29 (1999), 274-308.
doi: 10.1006/game.1999.0722. |
[17] |
V. Vovk and G. Shafer, Good randomized sequential probability forecasting is always possible, Journal of the Royal Statistical Society, Series B, 67 (2005), 747-763.
doi: 10.1111/j.1467-9868.2005.00525.x. |
show all references
References:
[1] |
N. Al-Najjar, R. Smorodinsky, A. Sandroni and J. Weinstein, Testing theories with learnable and predictive representations, Journal of Economic Theory, 145 (2010), 2203-2217.
doi: 10.1016/j.jet.2010.07.003. |
[2] |
D. Blackwell and L. Dubins, Merging of opinions with increasing information, Annals of Mathematical Statistics, 33 (1962), 882-886.
doi: 10.1214/aoms/1177704456. |
[3] |
E. Dekel and Y. Feinberg, Non-Bayesian testing of a stochastic prediction, Review of Economic Studies, 73 (2006), 893-906.
doi: 10.1111/j.1467-937X.2006.00401.x. |
[4] |
A. P. Dawid, Statistical theory: The prequential approach, Journal of the Royal Statistical Society, Series A, 147 (1984), 278-292.
doi: 10.2307/2981683. |
[5] |
K. Fan, Minimax theorems, Proceedings of the National Academy of Sciences, 39 (1953), 42-47.
doi: 10.1073/pnas.39.1.42. |
[6] |
A. Kechris, Classical Descriptive Set Theory, Springer Verlag, 1995.
doi: 10.1007/978-1-4612-4190-4. |
[7] |
E. Kalai and E. Lehrer, Weak and strong merging of opinions, J. Math. Econom., 23 (1994), 73-86.
doi: 10.1016/0304-4068(94)90037-X. |
[8] |
E. Kalai, E. Lehrer and R. Smorodinsky, Calibrated forecasting and merging, Games Econom. Behav., 29 (1999), 151-169.
doi: 10.1006/game.1998.0608. |
[9] |
D. Martin, The determinacy of Blackwell games, Journal of Symbolic Logic, 63 (1998), 1565-1581.
doi: 10.2307/2586667. |
[10] |
W. Olszewski, Calibration and Expert Testing, in Handbook of Game Theory with Economic Applications (eds. H. Petyon Young and Shmuel Zamir), Vol. IV, North Holland, 2014. |
[11] |
W. Olszewski and A. Sandroni, Manipulability of future-independent tests, Econometrica, 76 (2008), 1437-1466.
doi: 10.3982/ECTA7428. |
[12] |
W. Olszewski and A. Sandroni, Strategic manipulation of empirical tests, Mathematics of Operations Research, 34 (2009), 57-70.
doi: 10.1287/moor.1080.0347. |
[13] |
W. Olszewski and A. Sandroni, A nonmanipulable test, Annals of Statistics, 37 (2009), 1013-1039.
doi: 10.1214/08-AOS597. |
[14] |
A. Sandroni, The reproducible properties of correct forecasts, International Journal of Game Theory, 32 (2003), 151-159.
doi: 10.1007/s001820300153. |
[15] |
E. Shmaya, Many inspections are manipulable, Theoretical Economics, 3 (2008), 367-382. |
[16] |
S. Sorin, Merging, reputation, and repeated games with incomplete information, Games Econom. Behav., 29 (1999), 274-308.
doi: 10.1006/game.1999.0722. |
[17] |
V. Vovk and G. Shafer, Good randomized sequential probability forecasting is always possible, Journal of the Royal Statistical Society, Series B, 67 (2005), 747-763.
doi: 10.1111/j.1467-9868.2005.00525.x. |
[1] |
Xiangxiang Huang, Xianping Guo, Jianping Peng. A probability criterion for zero-sum stochastic games. Journal of Dynamics and Games, 2017, 4 (4) : 369-383. doi: 10.3934/jdg.2017020 |
[2] |
Marianne Akian, Stéphane Gaubert, Antoine Hochart. Ergodicity conditions for zero-sum games. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3901-3931. doi: 10.3934/dcds.2015.35.3901 |
[3] |
Chandan Pal, Somnath Pradhan. Zero-sum games for pure jump processes with risk-sensitive discounted cost criteria. Journal of Dynamics and Games, 2022, 9 (1) : 13-25. doi: 10.3934/jdg.2021020 |
[4] |
Sylvain Sorin, Guillaume Vigeral. Reversibility and oscillations in zero-sum discounted stochastic games. Journal of Dynamics and Games, 2015, 2 (1) : 103-115. doi: 10.3934/jdg.2015.2.103 |
[5] |
Antoine Hochart. An accretive operator approach to ergodic zero-sum stochastic games. Journal of Dynamics and Games, 2019, 6 (1) : 27-51. doi: 10.3934/jdg.2019003 |
[6] |
Alexander J. Zaslavski. Structure of approximate solutions of dynamic continuous time zero-sum games. Journal of Dynamics and Games, 2014, 1 (1) : 153-179. doi: 10.3934/jdg.2014.1.153 |
[7] |
Qingmeng Wei, Zhiyong Yu. Time-inconsistent recursive zero-sum stochastic differential games. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1051-1079. doi: 10.3934/mcrf.2018045 |
[8] |
Beatris A. Escobedo-Trujillo. Discount-sensitive equilibria in zero-sum stochastic differential games. Journal of Dynamics and Games, 2016, 3 (1) : 25-50. doi: 10.3934/jdg.2016002 |
[9] |
Fernando Luque-Vásquez, J. Adolfo Minjárez-Sosa. Average optimal strategies for zero-sum Markov games with poorly known payoff function on one side. Journal of Dynamics and Games, 2014, 1 (1) : 105-119. doi: 10.3934/jdg.2014.1.105 |
[10] |
Alexander J. Zaslavski. Turnpike properties of approximate solutions of dynamic discrete time zero-sum games. Journal of Dynamics and Games, 2014, 1 (2) : 299-330. doi: 10.3934/jdg.2014.1.299 |
[11] |
Salah Eddine Choutri, Boualem Djehiche, Hamidou Tembine. Optimal control and zero-sum games for Markov chains of mean-field type. Mathematical Control and Related Fields, 2019, 9 (3) : 571-605. doi: 10.3934/mcrf.2019026 |
[12] |
Libin Mou, Jiongmin Yong. Two-person zero-sum linear quadratic stochastic differential games by a Hilbert space method. Journal of Industrial and Management Optimization, 2006, 2 (1) : 95-117. doi: 10.3934/jimo.2006.2.95 |
[13] |
Fabien Gensbittel, Miquel Oliu-Barton, Xavier Venel. Existence of the uniform value in zero-sum repeated games with a more informed controller. Journal of Dynamics and Games, 2014, 1 (3) : 411-445. doi: 10.3934/jdg.2014.1.411 |
[14] |
René Carmona, Kenza Hamidouche, Mathieu Laurière, Zongjun Tan. Linear-quadratic zero-sum mean-field type games: Optimality conditions and policy optimization. Journal of Dynamics and Games, 2021, 8 (4) : 403-443. doi: 10.3934/jdg.2021023 |
[15] |
Zhi-Wei Sun. Unification of zero-sum problems, subset sums and covers of Z. Electronic Research Announcements, 2003, 9: 51-60. |
[16] |
Josef Hofbauer, Sylvain Sorin. Best response dynamics for continuous zero--sum games. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 215-224. doi: 10.3934/dcdsb.2006.6.215 |
[17] |
Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001 |
[18] |
Dejian Chang, Zhen Wu. Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance. Journal of Industrial and Management Optimization, 2015, 11 (1) : 27-40. doi: 10.3934/jimo.2015.11.27 |
[19] |
Jorge Clarke, Christian Olivera, Ciprian Tudor. The transport equation and zero quadratic variation processes. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 2991-3002. doi: 10.3934/dcdsb.2016083 |
[20] |
Beatris Adriana Escobedo-Trujillo, José Daniel López-Barrientos. Nonzero-sum stochastic differential games with additive structure and average payoffs. Journal of Dynamics and Games, 2014, 1 (4) : 555-578. doi: 10.3934/jdg.2014.1.555 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]