- Previous Article
- JDG Home
- This Issue
-
Next Article
Strong approachability
Game dynamics and Nash equilibria
1. | CEREMADE, Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, F-75775 Paris, France |
References:
[1] |
A. Gaunersdorfer and J. Hofbauer, Fictitious play, Shapley polygons, and the replicator equation, Games and Economic Behavior, 11 (1995), 279-303.
doi: 10.1006/game.1995.1052. |
[2] |
I. Gilboa and A. Matsui, Social stability and equilibrium, Econometrica, 59 (1991), 859-867.
doi: 10.2307/2938230. |
[3] |
S. Hart, Adaptive heuristics, Econometrica, 73 (2005), 1401-1430.
doi: 10.1111/j.1468-0262.2005.00625.x. |
[4] |
J. Hofbauer and W. H. Sandholm, Survival of dominated strategies under evolutionary dynamics, Theoretical Economics, 6 (2011), 341-377.
doi: 10.3982/TE771. |
[5] |
J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, 1998.
doi: 10.1017/CBO9781139173179. |
[6] |
J. Hofbauer, S. Sorin and Y. Viossat, Time average replicator and best reply dynamics, Mathematics of Operations Research, 34 (2009), 263-269.
doi: 10.1287/moor.1080.0359. |
[7] |
M. J. M. Jansen, Regularity and stability of equilibrium points of bimatrix games, Mathematics of Operations Research, 6 (1981), 530-550.
doi: 10.1287/moor.6.4.530. |
[8] |
A. Matsui, Best-response dynamics and socially stable strategies, Journal of Economic Theory, 57 (1992), 343-362.
doi: 10.1016/0022-0531(92)90040-O. |
[9] |
D. Monderer and A. Sela, Fictitious-play and No-Cycling Condition, SFB 504 Discussion Paper 97-12, Universität Mannheim, 1997. |
[10] |
W. H. Sandholm, Population Games and Evolutionary Dynamics, MIT Press, Cambridge, MA, 2010. |
[11] |
P. D. Taylor and L. Jonker, Evolutionary stable strategies and game dynamics, Mathematical Biosciences, 40 (1978), 145-156.
doi: 10.1016/0025-5564(78)90077-9. |
[12] |
E. van Damme, Stability and Perfection of Nash Equilibria, Second edition, Springer-Verlag, New-York, 1991.
doi: 10.1007/978-3-642-58242-4. |
[13] |
Y. Viossat, The replicator dynamics does not lead to correlated equilibria, Games and Economic Behavior, 59 (2007), 397-407.
doi: 10.1016/j.geb.2006.09.001. |
[14] |
Y. Viossat, Evolutionary dynamics may eliminate all strategies used in correlated equilibria, Mathematical Social Sciences, 56 (2008), 27-43.
doi: 10.1016/j.mathsocsci.2007.12.001. |
[15] |
Y. Viossat, Deterministic monotone dynamics and dominated strategies, preprint,, , ().
|
[16] |
J. W. Weibull, Evolutionary Game Theory, MIT Press, Cambridge, MA, 1995. |
[17] |
E. C. Zeeman, Population dynamics from game theory, in Global Theory of Dynamical Systems (eds. A. Nitecki and C. Robinson), Lecture Notes in Mathematics, 819, Springer, New York, 1980, 471-497. |
show all references
References:
[1] |
A. Gaunersdorfer and J. Hofbauer, Fictitious play, Shapley polygons, and the replicator equation, Games and Economic Behavior, 11 (1995), 279-303.
doi: 10.1006/game.1995.1052. |
[2] |
I. Gilboa and A. Matsui, Social stability and equilibrium, Econometrica, 59 (1991), 859-867.
doi: 10.2307/2938230. |
[3] |
S. Hart, Adaptive heuristics, Econometrica, 73 (2005), 1401-1430.
doi: 10.1111/j.1468-0262.2005.00625.x. |
[4] |
J. Hofbauer and W. H. Sandholm, Survival of dominated strategies under evolutionary dynamics, Theoretical Economics, 6 (2011), 341-377.
doi: 10.3982/TE771. |
[5] |
J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, 1998.
doi: 10.1017/CBO9781139173179. |
[6] |
J. Hofbauer, S. Sorin and Y. Viossat, Time average replicator and best reply dynamics, Mathematics of Operations Research, 34 (2009), 263-269.
doi: 10.1287/moor.1080.0359. |
[7] |
M. J. M. Jansen, Regularity and stability of equilibrium points of bimatrix games, Mathematics of Operations Research, 6 (1981), 530-550.
doi: 10.1287/moor.6.4.530. |
[8] |
A. Matsui, Best-response dynamics and socially stable strategies, Journal of Economic Theory, 57 (1992), 343-362.
doi: 10.1016/0022-0531(92)90040-O. |
[9] |
D. Monderer and A. Sela, Fictitious-play and No-Cycling Condition, SFB 504 Discussion Paper 97-12, Universität Mannheim, 1997. |
[10] |
W. H. Sandholm, Population Games and Evolutionary Dynamics, MIT Press, Cambridge, MA, 2010. |
[11] |
P. D. Taylor and L. Jonker, Evolutionary stable strategies and game dynamics, Mathematical Biosciences, 40 (1978), 145-156.
doi: 10.1016/0025-5564(78)90077-9. |
[12] |
E. van Damme, Stability and Perfection of Nash Equilibria, Second edition, Springer-Verlag, New-York, 1991.
doi: 10.1007/978-3-642-58242-4. |
[13] |
Y. Viossat, The replicator dynamics does not lead to correlated equilibria, Games and Economic Behavior, 59 (2007), 397-407.
doi: 10.1016/j.geb.2006.09.001. |
[14] |
Y. Viossat, Evolutionary dynamics may eliminate all strategies used in correlated equilibria, Mathematical Social Sciences, 56 (2008), 27-43.
doi: 10.1016/j.mathsocsci.2007.12.001. |
[15] |
Y. Viossat, Deterministic monotone dynamics and dominated strategies, preprint,, , ().
|
[16] |
J. W. Weibull, Evolutionary Game Theory, MIT Press, Cambridge, MA, 1995. |
[17] |
E. C. Zeeman, Population dynamics from game theory, in Global Theory of Dynamical Systems (eds. A. Nitecki and C. Robinson), Lecture Notes in Mathematics, 819, Springer, New York, 1980, 471-497. |
[1] |
Sylvain Sorin. Replicator dynamics: Old and new. Journal of Dynamics and Games, 2020, 7 (4) : 365-386. doi: 10.3934/jdg.2020028 |
[2] |
Mirosław Lachowicz, Andrea Quartarone, Tatiana V. Ryabukha. Stability of solutions of kinetic equations corresponding to the replicator dynamics. Kinetic and Related Models, 2014, 7 (1) : 109-119. doi: 10.3934/krm.2014.7.109 |
[3] |
Vassilis G. Papanicolaou, Kyriaki Vasilakopoulou. Similarity solutions of a multidimensional replicator dynamics integrodifferential equation. Journal of Dynamics and Games, 2016, 3 (1) : 51-74. doi: 10.3934/jdg.2016003 |
[4] |
Saul Mendoza-Palacios, Onésimo Hernández-Lerma. Stability of the replicator dynamics for games in metric spaces. Journal of Dynamics and Games, 2017, 4 (4) : 319-333. doi: 10.3934/jdg.2017017 |
[5] |
Sébastien Guisset. Angular moments models for rarefied gas dynamics. Numerical comparisons with kinetic and Navier-Stokes equations. Kinetic and Related Models, 2020, 13 (4) : 739-758. doi: 10.3934/krm.2020025 |
[6] |
Matt Barker. From mean field games to the best reply strategy in a stochastic framework. Journal of Dynamics and Games, 2019, 6 (4) : 291-314. doi: 10.3934/jdg.2019020 |
[7] |
Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153 |
[8] |
Yuanshi Wang, Hong Wu, Shigui Ruan. Global dynamics and bifurcations in a four-dimensional replicator system. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 259-271. doi: 10.3934/dcdsb.2013.18.259 |
[9] |
Andrew Vlasic. Long-run analysis of the stochastic replicator dynamics in the presence of random jumps. Journal of Dynamics and Games, 2018, 5 (4) : 283-309. doi: 10.3934/jdg.2018018 |
[10] |
Josef Hofbauer, Sylvain Sorin. Best response dynamics for continuous zero--sum games. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 215-224. doi: 10.3934/dcdsb.2006.6.215 |
[11] |
Peter Bednarik, Josef Hofbauer. Discretized best-response dynamics for the Rock-Paper-Scissors game. Journal of Dynamics and Games, 2017, 4 (1) : 75-86. doi: 10.3934/jdg.2017005 |
[12] |
MirosŁaw Lachowicz, Tatiana Ryabukha. Equilibrium solutions for microscopic stochastic systems in population dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 777-786. doi: 10.3934/mbe.2013.10.777 |
[13] |
Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics and Games, 2017, 4 (3) : 255-284. doi: 10.3934/jdg.2017015 |
[14] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics and Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[15] |
Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091 |
[16] |
Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A penalty method for generalized Nash equilibrium problems. Journal of Industrial and Management Optimization, 2012, 8 (1) : 51-65. doi: 10.3934/jimo.2012.8.51 |
[17] |
Oksana Koltsova, Lev Lerman. Hamiltonian dynamics near nontransverse homoclinic orbit to saddle-focus equilibrium. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 883-913. doi: 10.3934/dcds.2009.25.883 |
[18] |
Shaokun Tao, Xianjin Du, Suresh P. Sethi, Xiuli He, Yu Li. Equilibrium decisions on pricing and innovation that impact reference price dynamics. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021157 |
[19] |
Elvio Accinelli, Bruno Bazzano, Franco Robledo, Pablo Romero. Nash Equilibrium in evolutionary competitive models of firms and workers under external regulation. Journal of Dynamics and Games, 2015, 2 (1) : 1-32. doi: 10.3934/jdg.2015.2.1 |
[20] |
Dean A. Carlson. Finding open-loop Nash equilibrium for variational games. Conference Publications, 2005, 2005 (Special) : 153-163. doi: 10.3934/proc.2005.2005.153 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]