\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the Euler equation approach to discrete--time nonstationary optimal control problems

Abstract Related Papers Cited by
  • We are concerned with deterministic and stochastic nonstationary discrete--time optimal control problems in infinite horizon. We show, using Gâteaux differentials, that the so--called Euler equation and a transversality condition are necessary conditions for optimality. In particular, the transversality condition is obtained in a more general form and under milder hypotheses than in previous works. Sufficient conditions are also provided. We also find closed--form solutions to several (discounted) stationary and nonstationary control problems.
    Mathematics Subject Classification: Primary: 93C55, 91B55, 93E20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Acemoglu, "Introduction to Modern Economic Growth," Princeton University Press, Princeton, 2009.

    [2]

    J. Adda and R. Cooper, "Dynamic Economics. Quantitative Methods and Applications," MIT Press, Cambridge, MA, 2003.

    [3]

    V. I. Arkin and I. V. Evstigneev, "Stochastic Models of Control and Economic Dynamics," Academic Press, Orlando, FL, 1987.

    [4]

    Y. Bar-Ness, The discrete Euler equation on the normed linear space $l_n^1$, Int. J. Control, 21 (1975), 625-640.doi: 10.1080/00207177508922017.

    [5]

    W. A. Brock and L. Mirman, Optimal economic growth and uncertainty: The discounted case, J. Econ. Theory, 4 (1972), 479-513.doi: 10.1016/0022-0531(72)90135-4.

    [6]

    J. A. Cadzow, Discrete calculus of variations, Int. J. Control, 11 (1970), 393-407.doi: 10.1080/00207177008905922.

    [7]

    G. C. Chow, "Dynamic Economics: Optimization by the Lagrange Method," Oxford University Press, New York, 1997.

    [8]

    I. Ekeland and J. A. Scheinkman, Transversality conditions for some infinite horizon discrete time optimization problems, Math. Oper. Res., 11 (1986), 216-229.doi: 10.1287/moor.11.2.216.

    [9]

    S. Elaydi, "An Introduction to Difference Equations," Third edition, Undergraduate Texts in Mathematics, Springer, New York, 2005.

    [10]

    J. Engwerda, "LQ Dynamic Optimization and Differential Games," John Wiley & Sons, Chichester, 2005.

    [11]

    S. Flåm and A. Fougères, Infinite horizon programs; Convergence of approximate solutions, Ann. Oper. Res., 29 (1991), 333-350.doi: 10.1007/BF02283604.

    [12]

    W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control," Applications of Mathematics, No. 1, Springer-Verlag, Berlin-New York, 1975.

    [13]

    X. Guo, A. Hernández-del-Valle and O. Hernández-Lerma, Nonstationary discrete-time deterministic and stochastic control systems: Bounded and unbounded cases, Systems Control Lett., 60 (2011), 503-509.doi: 10.1016/j.sysconle.2011.04.006.

    [14]

    O. Hernández-Lerma and J. B. Lasserre, "Discrete-Time Markov Control Processes: Basic Optimality Criteria," Applications of Mathematics (New York), 30, Springer-Verlag, New York, 1996.

    [15]

    T. Kamihigashi, A simple proof of the necessity of the transversality condition, Econ. Theory, 20 (2002), 427-433.doi: 10.1007/s001990100198.

    [16]

    T. Kamihigashi, Transversality conditions and dynamic economic behaviour, in "The New Palgrave Dictionary of Economics" (eds. S. N. Durlauf and L. E. Blume), Second edition, Palgrave Macmillan, Hampshire, (2008), 384-387.doi: 10.1057/9780230226203.1737.

    [17]

    W. G. Kelley and A. C. Peterson, "Difference Equations. An Introduction with Applications," Academic Press, Inc., Boston, MA, 1991.

    [18]

    C. Le Van and R.-A. Dana, "Dynamic Programming in Economics," Dynamic Modeling and Econometrics in Economics and Finance, 5, Kluwer Academic Publishers, Dordrecht, 2003.

    [19]

    D. Levhari and L. D. Mirman, The great fish war: An example using dynamic Cournot-Nash solution, Bell J. Econom., 11 (1980), 322-334.doi: 10.2307/3003416.

    [20]

    L. Ljungqvist and T. J. Sargent, "Recursive Macroeconomic Theory," Second edition, MIT Press, Cambridge, MA, 2004.

    [21]

    D. G. Luenberger, "Optimization by Vector Space Methods," John Wiley & Sons, Inc., New York-London-Sydney, 1969.

    [22]

    K. Okuguchi, A dynamic Cournot-Nash equilibrium in fishery: The effects of entry, Riv. Mat. Sci. Econom. Social., 4 (1981), 59-64.doi: 10.1007/BF02123580.

    [23]

    W. Rudin, "Principles of Mathematical Analysis," Third edition, McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976.

    [24]

    I. Schochetman and R. L. Smith, Finite dimensional approximation in infinite-dimensional mathematical programming, Math. Programming, 54 (1992), 307-333.doi: 10.1007/BF01586057.

    [25]

    N. L. Stokey, R. E. Lucas and E. C. Prescott, Jr., "Recursive Methods in Economic Dynamics," With the collaboration of Edward C. Prescott, Harvard University Press, Cambridge, MA, 1989.

    [26]

    K. Sydsæter, P. J. Hammond, A. Seierstad and A. Strøm, "Further Mathematics for Economic Analysis," Second edition, Prentice-Hall, New York, 2008.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(428) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return