Advanced Search
Article Contents
Article Contents

On the Euler equation approach to discrete--time nonstationary optimal control problems

Abstract Related Papers Cited by
  • We are concerned with deterministic and stochastic nonstationary discrete--time optimal control problems in infinite horizon. We show, using Gâteaux differentials, that the so--called Euler equation and a transversality condition are necessary conditions for optimality. In particular, the transversality condition is obtained in a more general form and under milder hypotheses than in previous works. Sufficient conditions are also provided. We also find closed--form solutions to several (discounted) stationary and nonstationary control problems.
    Mathematics Subject Classification: Primary: 93C55, 91B55, 93E20.


    \begin{equation} \\ \end{equation}
  • [1]

    D. Acemoglu, "Introduction to Modern Economic Growth," Princeton University Press, Princeton, 2009.


    J. Adda and R. Cooper, "Dynamic Economics. Quantitative Methods and Applications," MIT Press, Cambridge, MA, 2003.


    V. I. Arkin and I. V. Evstigneev, "Stochastic Models of Control and Economic Dynamics," Academic Press, Orlando, FL, 1987.


    Y. Bar-Ness, The discrete Euler equation on the normed linear space $l_n^1$, Int. J. Control, 21 (1975), 625-640.doi: 10.1080/00207177508922017.


    W. A. Brock and L. Mirman, Optimal economic growth and uncertainty: The discounted case, J. Econ. Theory, 4 (1972), 479-513.doi: 10.1016/0022-0531(72)90135-4.


    J. A. Cadzow, Discrete calculus of variations, Int. J. Control, 11 (1970), 393-407.doi: 10.1080/00207177008905922.


    G. C. Chow, "Dynamic Economics: Optimization by the Lagrange Method," Oxford University Press, New York, 1997.


    I. Ekeland and J. A. Scheinkman, Transversality conditions for some infinite horizon discrete time optimization problems, Math. Oper. Res., 11 (1986), 216-229.doi: 10.1287/moor.11.2.216.


    S. Elaydi, "An Introduction to Difference Equations," Third edition, Undergraduate Texts in Mathematics, Springer, New York, 2005.


    J. Engwerda, "LQ Dynamic Optimization and Differential Games," John Wiley & Sons, Chichester, 2005.


    S. Flåm and A. Fougères, Infinite horizon programs; Convergence of approximate solutions, Ann. Oper. Res., 29 (1991), 333-350.doi: 10.1007/BF02283604.


    W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control," Applications of Mathematics, No. 1, Springer-Verlag, Berlin-New York, 1975.


    X. Guo, A. Hernández-del-Valle and O. Hernández-Lerma, Nonstationary discrete-time deterministic and stochastic control systems: Bounded and unbounded cases, Systems Control Lett., 60 (2011), 503-509.doi: 10.1016/j.sysconle.2011.04.006.


    O. Hernández-Lerma and J. B. Lasserre, "Discrete-Time Markov Control Processes: Basic Optimality Criteria," Applications of Mathematics (New York), 30, Springer-Verlag, New York, 1996.


    T. Kamihigashi, A simple proof of the necessity of the transversality condition, Econ. Theory, 20 (2002), 427-433.doi: 10.1007/s001990100198.


    T. Kamihigashi, Transversality conditions and dynamic economic behaviour, in "The New Palgrave Dictionary of Economics" (eds. S. N. Durlauf and L. E. Blume), Second edition, Palgrave Macmillan, Hampshire, (2008), 384-387.doi: 10.1057/9780230226203.1737.


    W. G. Kelley and A. C. Peterson, "Difference Equations. An Introduction with Applications," Academic Press, Inc., Boston, MA, 1991.


    C. Le Van and R.-A. Dana, "Dynamic Programming in Economics," Dynamic Modeling and Econometrics in Economics and Finance, 5, Kluwer Academic Publishers, Dordrecht, 2003.


    D. Levhari and L. D. Mirman, The great fish war: An example using dynamic Cournot-Nash solution, Bell J. Econom., 11 (1980), 322-334.doi: 10.2307/3003416.


    L. Ljungqvist and T. J. Sargent, "Recursive Macroeconomic Theory," Second edition, MIT Press, Cambridge, MA, 2004.


    D. G. Luenberger, "Optimization by Vector Space Methods," John Wiley & Sons, Inc., New York-London-Sydney, 1969.


    K. Okuguchi, A dynamic Cournot-Nash equilibrium in fishery: The effects of entry, Riv. Mat. Sci. Econom. Social., 4 (1981), 59-64.doi: 10.1007/BF02123580.


    W. Rudin, "Principles of Mathematical Analysis," Third edition, McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976.


    I. Schochetman and R. L. Smith, Finite dimensional approximation in infinite-dimensional mathematical programming, Math. Programming, 54 (1992), 307-333.doi: 10.1007/BF01586057.


    N. L. Stokey, R. E. Lucas and E. C. Prescott, Jr., "Recursive Methods in Economic Dynamics," With the collaboration of Edward C. Prescott, Harvard University Press, Cambridge, MA, 1989.


    K. Sydsæter, P. J. Hammond, A. Seierstad and A. Strøm, "Further Mathematics for Economic Analysis," Second edition, Prentice-Hall, New York, 2008.

  • 加载中

Article Metrics

HTML views() PDF downloads(428) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint