• Previous Article
    Average optimal strategies for zero-sum Markov games with poorly known payoff function on one side
  • JDG Home
  • This Issue
  • Next Article
    On the Euler equation approach to discrete--time nonstationary optimal control problems
January  2014, 1(1): 79-104. doi: 10.3934/jdg.2014.1.79

Optimal control indicators for the assessment of the influence of government policy to business cycle shocks

1. 

Department of Economics, Division of Mathematics-Informatics, National and Kapodistrian University of Athens, 8 Pesmazoglou Street, Athens, 105 59, Greece, Greece

Received  July 2012 Revised  October 2012 Published  June 2013

We consider idealised dynamic models isolating the relationship between GDP and government expenditures. In this setting we assess the possibility of smoothing the effect of business cycle shocks via government expenditure alone and propose optimal control indicators measuring the control potential of this government action. This provides with new indicators and indices refining the dynamic relationship obtained by ARMA or similar type of macro - modeling.
Citation: John Leventides, Iraklis Kollias. Optimal control indicators for the assessment of the influence of government policy to business cycle shocks. Journal of Dynamics and Games, 2014, 1 (1) : 79-104. doi: 10.3934/jdg.2014.1.79
References:
[1]

A. G. Malliaris and J. L. Urrutia, How big is the random walk in macroeconomic time series: Variance ratio tests, Economic Uncertainty, Instabilities And Asset Bubbles, (2005), 9-12. doi: 10.1142/9789812701015_0002.

[2]

C. Burnside and M. Eichenbaum, Factor Hoarding and the Propagation of Business Cycle Shocks, American Economic Review, 86 (1996), 1154-1174.

[3]

C. R. Nelson and C. I. Plosser, Trends and random walks in macroeconomic time series: Some evidence and implications, Journal of Monetary Economics, 10 (1982), 139-162. doi: 10.1016/0304-3932(82)90012-5.

[4]

D. E. W. Laidler, An elementary monetarist model of simultaneous fluctuations in prices and output, in "Inflation in Small Countries" (ed. H. Frisch), Lecture Notes in Economics and Mathematical Systems, 119, Springer, Berlin-Heidelberg, (1976), 75-89. doi: 10.1007/978-3-642-46331-0_4.

[5]

F. Canova, Detrending and business cycle facts, Journal of Monetary Economics, 41 (1998), 475-512. doi: 10.1016/S0304-3932(98)00006-3.

[6]

F. E. Kydland and E. C. Prescott, Time to build and aggregate fluctuations, Econometrica, 50 (1982), 1345-1370.

[7]

J.-O. Cho and T. F. Cooley, The business cycle with nominal contracts, Economic Theory, 6 (1995), 13-33. doi: 10.1007/BF01213939.

[8]

J. B. Long, Jr. and C. I. Plosser, Real business cycles, Journal of Political Economy, 91 (1983), 39-69.

[9]

J. H. Stock and M. W. Watson, Does GNP have a unit root?, Economics Letters, 22 (1986), 147-151. doi: 10.1016/0165-1765(86)90222-3.

[10]

J. Y. Campbell and N. G. Mankiw, Are output fluctuations transitory?, The Quarterly Journal of Economics, 102 (1987), 857-880. doi: 10.2307/1884285.

[11]

L. J. Christiano and M. Eichenbaum, Current real-business cycle theories and aggregate labor-market fluctuations, American Economic Review, 82 (1992), 430-450.

[12]

L. J. Christiano and M. Eichenbaum, Unit roots in real GNP: Do we know and do we care?, Carnegie-Rochester Conference Series on Public Policy, 32 (1990), 7-62.

[13]

Lutz Arnold, "Business Cycle Theory," Oxford University Press, 2002. doi: 10.1093/acprof:oso/9780199256815.001.0001.

[14]

M. Boldrin and M. Horvath, Labor contracts and business cycles, Journal of Political Economy, 103 (1995), 972-1004. doi: 10.1086/262010.

[15]

N. G. Mankiw and D. Romer, "New Keynesian Economics," Vols. 1 and 2, Cambridge University Press, 1991.

[16]

O. J. Blanchard and S. Fischer, "Lectures in Macroeconomics," MIT Press, Cambridge, 1989.

[17]

Philip R. Lane, The cyclical behaviour of fiscal policy: Evidence from the OECD, Journal of Public Economics, 87 (2003), 2661-2675. doi: 10.1016/S0047-2727(02)00075-0.

[18]

R. Cottle, J. Pang and R. Stone, "Linear Complimentarity Problem," Classics in Applied Mathematics, SIAM, 2009.

[19]

R. E. Lucas, Jr., Econometric policy evaluation: A critique, in "Carnegie-Rochester Conference Series on Public Policy," Elsevier, North Holland, Amsterdam, (1976), 19-46. doi: 10.1016/S0167-2231(76)80003-6.

[20]

R. E. A. Farmer and J.-T. Guo, Real business cycles and the animal spirits hypothesis, Journal of Economic Theory, 63 (1994), 42-72. doi: 10.1006/jeth.1994.1032.

[21]

R. G. King and S. T. Rebelo, Resuscitating real business cycles, in "Handbook of Macroeconomics" (eds. J. B. Taylor and M. Woodford), North Holland, Amsterdam, (1999), 927-1007. doi: 10.1016/S1574-0048(99)10022-3.

[22]

R. G. D. Allen, "Macroeconomic Theory: A Mathematical Treatment," Macmillan, London, 1967.

[23]

R. Neck, The Contribution of Control Theory to the Analysis of Economic Policy, in "Proceedings of the $17^th$ World Congress," The International Federation of Automatic Control, Seoul, (2008), 6-11.

[24]

V. R. Bencivenga, An econometric study of hours and output variation with preference shocks, International Economic Review, 33 (1992), 449-471. doi: 10.2307/2526904.

[25]

S. Boyd and L. Vandenberghe, "Convex Optimization," Cambridge University Press, Cambridge, 2004.

[26]

T. Puu and I. Sushko, A business cycle model with cubic nonlinearity, Chaos, Solitons and Fractals, 19 (2004), 597-612. doi: 10.1016/S0960-0779(03)00132-2.

show all references

References:
[1]

A. G. Malliaris and J. L. Urrutia, How big is the random walk in macroeconomic time series: Variance ratio tests, Economic Uncertainty, Instabilities And Asset Bubbles, (2005), 9-12. doi: 10.1142/9789812701015_0002.

[2]

C. Burnside and M. Eichenbaum, Factor Hoarding and the Propagation of Business Cycle Shocks, American Economic Review, 86 (1996), 1154-1174.

[3]

C. R. Nelson and C. I. Plosser, Trends and random walks in macroeconomic time series: Some evidence and implications, Journal of Monetary Economics, 10 (1982), 139-162. doi: 10.1016/0304-3932(82)90012-5.

[4]

D. E. W. Laidler, An elementary monetarist model of simultaneous fluctuations in prices and output, in "Inflation in Small Countries" (ed. H. Frisch), Lecture Notes in Economics and Mathematical Systems, 119, Springer, Berlin-Heidelberg, (1976), 75-89. doi: 10.1007/978-3-642-46331-0_4.

[5]

F. Canova, Detrending and business cycle facts, Journal of Monetary Economics, 41 (1998), 475-512. doi: 10.1016/S0304-3932(98)00006-3.

[6]

F. E. Kydland and E. C. Prescott, Time to build and aggregate fluctuations, Econometrica, 50 (1982), 1345-1370.

[7]

J.-O. Cho and T. F. Cooley, The business cycle with nominal contracts, Economic Theory, 6 (1995), 13-33. doi: 10.1007/BF01213939.

[8]

J. B. Long, Jr. and C. I. Plosser, Real business cycles, Journal of Political Economy, 91 (1983), 39-69.

[9]

J. H. Stock and M. W. Watson, Does GNP have a unit root?, Economics Letters, 22 (1986), 147-151. doi: 10.1016/0165-1765(86)90222-3.

[10]

J. Y. Campbell and N. G. Mankiw, Are output fluctuations transitory?, The Quarterly Journal of Economics, 102 (1987), 857-880. doi: 10.2307/1884285.

[11]

L. J. Christiano and M. Eichenbaum, Current real-business cycle theories and aggregate labor-market fluctuations, American Economic Review, 82 (1992), 430-450.

[12]

L. J. Christiano and M. Eichenbaum, Unit roots in real GNP: Do we know and do we care?, Carnegie-Rochester Conference Series on Public Policy, 32 (1990), 7-62.

[13]

Lutz Arnold, "Business Cycle Theory," Oxford University Press, 2002. doi: 10.1093/acprof:oso/9780199256815.001.0001.

[14]

M. Boldrin and M. Horvath, Labor contracts and business cycles, Journal of Political Economy, 103 (1995), 972-1004. doi: 10.1086/262010.

[15]

N. G. Mankiw and D. Romer, "New Keynesian Economics," Vols. 1 and 2, Cambridge University Press, 1991.

[16]

O. J. Blanchard and S. Fischer, "Lectures in Macroeconomics," MIT Press, Cambridge, 1989.

[17]

Philip R. Lane, The cyclical behaviour of fiscal policy: Evidence from the OECD, Journal of Public Economics, 87 (2003), 2661-2675. doi: 10.1016/S0047-2727(02)00075-0.

[18]

R. Cottle, J. Pang and R. Stone, "Linear Complimentarity Problem," Classics in Applied Mathematics, SIAM, 2009.

[19]

R. E. Lucas, Jr., Econometric policy evaluation: A critique, in "Carnegie-Rochester Conference Series on Public Policy," Elsevier, North Holland, Amsterdam, (1976), 19-46. doi: 10.1016/S0167-2231(76)80003-6.

[20]

R. E. A. Farmer and J.-T. Guo, Real business cycles and the animal spirits hypothesis, Journal of Economic Theory, 63 (1994), 42-72. doi: 10.1006/jeth.1994.1032.

[21]

R. G. King and S. T. Rebelo, Resuscitating real business cycles, in "Handbook of Macroeconomics" (eds. J. B. Taylor and M. Woodford), North Holland, Amsterdam, (1999), 927-1007. doi: 10.1016/S1574-0048(99)10022-3.

[22]

R. G. D. Allen, "Macroeconomic Theory: A Mathematical Treatment," Macmillan, London, 1967.

[23]

R. Neck, The Contribution of Control Theory to the Analysis of Economic Policy, in "Proceedings of the $17^th$ World Congress," The International Federation of Automatic Control, Seoul, (2008), 6-11.

[24]

V. R. Bencivenga, An econometric study of hours and output variation with preference shocks, International Economic Review, 33 (1992), 449-471. doi: 10.2307/2526904.

[25]

S. Boyd and L. Vandenberghe, "Convex Optimization," Cambridge University Press, Cambridge, 2004.

[26]

T. Puu and I. Sushko, A business cycle model with cubic nonlinearity, Chaos, Solitons and Fractals, 19 (2004), 597-612. doi: 10.1016/S0960-0779(03)00132-2.

[1]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial and Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

[2]

Liangquan Zhang, Qing Zhou, Juan Yang. Necessary condition for optimal control of doubly stochastic systems. Mathematical Control and Related Fields, 2020, 10 (2) : 379-403. doi: 10.3934/mcrf.2020002

[3]

Ying Hu, Shanjian Tang. Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 1-. doi: 10.1186/s41546-018-0035-x

[4]

Jiongmin Yong. Stochastic optimal control — A concise introduction. Mathematical Control and Related Fields, 2020  doi: 10.3934/mcrf.2020027

[5]

Debra Lewis. Modeling student engagement using optimal control theory. Journal of Geometric Mechanics, 2022, 14 (1) : 131-150. doi: 10.3934/jgm.2021032

[6]

Y. Gong, X. Xiang. A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales. Journal of Industrial and Management Optimization, 2009, 5 (1) : 1-10. doi: 10.3934/jimo.2009.5.1

[7]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[8]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations and Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

[9]

N. U. Ahmed. Existence of optimal output feedback control law for a class of uncertain infinite dimensional stochastic systems: A direct approach. Evolution Equations and Control Theory, 2012, 1 (2) : 235-250. doi: 10.3934/eect.2012.1.235

[10]

Yadong Shu, Bo Li. Linear-quadratic optimal control for discrete-time stochastic descriptor systems. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1583-1602. doi: 10.3934/jimo.2021034

[11]

Cristiana J. Silva, Delfim F. M. Torres. Modeling and optimal control of HIV/AIDS prevention through PrEP. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 119-141. doi: 10.3934/dcdss.2018008

[12]

Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545

[13]

Loïc Louison, Abdennebi Omrane, Harry Ozier-Lafontaine, Delphine Picart. Modeling plant nutrient uptake: Mathematical analysis and optimal control. Evolution Equations and Control Theory, 2015, 4 (2) : 193-203. doi: 10.3934/eect.2015.4.193

[14]

Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier. On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences & Engineering, 2017, 14 (1) : 217-235. doi: 10.3934/mbe.2017014

[15]

Carmen Chicone, Stephen J. Lombardo, David G. Retzloff. Modeling, approximation, and time optimal temperature control for binder removal from ceramics. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 103-140. doi: 10.3934/dcdsb.2021034

[16]

Roberta Ghezzi, Benedetto Piccoli. Optimal control of a multi-level dynamic model for biofuel production. Mathematical Control and Related Fields, 2017, 7 (2) : 235-257. doi: 10.3934/mcrf.2017008

[17]

B. M. Adams, H. T. Banks, Hee-Dae Kwon, Hien T. Tran. Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches. Mathematical Biosciences & Engineering, 2004, 1 (2) : 223-241. doi: 10.3934/mbe.2004.1.223

[18]

Qiying Hu, Wuyi Yue. Optimal control for discrete event systems with arbitrary control pattern. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 535-558. doi: 10.3934/dcdsb.2006.6.535

[19]

Elena Goncharova, Maxim Staritsyn. Optimal control of dynamical systems with polynomial impulses. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4367-4384. doi: 10.3934/dcds.2015.35.4367

[20]

Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275

 Impact Factor: 

Metrics

  • PDF downloads (125)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]