-
Previous Article
Hamiltonian evolutionary games
- JDG Home
- This Issue
- Next Article
Nash Equilibrium in evolutionary competitive models of firms and workers under external regulation
1. | Facultad de Economía, Universidad Autónoma San Luis Potosí, Álvaro Obregón 64, Centro Histórico, PC 78000, San Luis Potosí, Mexico |
2. | Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, PC 11300, Montevideo, Uruguay, Uruguay, Uruguay |
  Therefore, an evolutionary competitive model is introduced, where an external regulator provides loans to encourage workers to be skilled and firms to be innovative. This model includes poverty traps but also other Nash equilibria, where firms and workers are jointly innovative and skilled.
  The external regulator, in a three-phase process (loans, taxes and inactivity) achieves a common wealth, with a prosperous economy, with innovative firms and skilled workers.
References:
[1] |
E. Accinelli, S. London, L. Punzo and E. Sanchez, Dynamic complementarities, efficiency and nash equilibria for populations of firms and workers, Journal of Economics and Econometrics, 53 (2010), 90-110. |
[2] |
E. Accinelli, S. London, L. F. Punzo and E. J. S. Carrera, Poverty traps, rationality and evolution, Dynamics, Games and Science I, 1 (2011), 37-52.
doi: 10.1007/978-3-642-11456-4_4. |
[3] |
E. Accinelli, S. London and E. Sanchez, A model of imitative behaviour in the population of firms and workers, Technical Report, Department of Economics, University of Siena, 2009. |
[4] |
C. Azariadis and J. Stachurski, Chapter 5 poverty traps, in Handbook of Economic Growth, Vol. 1 (eds. P. Aghion and S. Durlauf), 2005, 295-384.
doi: 10.1016/S1574-0684(05)01005-1. |
[5] |
C. B. Barrett and B. M. Swallow, Fractal poverty traps, World Development, 34 (2006), 1-15.
doi: 10.1016/j.worlddev.2005.06.008. |
[6] |
G. Dahlquist, A. Bjorck and N. Anderson, Numerical Methods, Reprint edition, Dover Publications, 2003. |
[7] |
R. Darling and J. Norris, Differential equation approximations for Markov chains, Probability Surveys, 5 (2008), 37-79.
doi: 10.1214/07-PS121. |
[8] |
J. Dormand and P. Prince, A family of embedded Runge-Kutta formulae, Journal of Computational and Applied Mathematics, 6 (1980), 19-26.
doi: 10.1016/0771-050X(80)90013-3. |
[9] |
M. Hirsch and S. Smale, Differential Equations, Dynamical Systems, And Linear Algebra, Acad. Press, 1974. |
[10] |
J. Maynard Smith and G. R. Price, The logic of animal conflict, Nature, 246 (1973), 15-18.
doi: 10.1038/246015a0. |
[11] |
J. Nash, Non-cooperative games, The Annals of Mathematics, 54 (1951), 286-295.
doi: 10.2307/1969529. |
[12] |
P. Robert, Stochastic Networks and Queues, Springer, 2003.
doi: 10.1007/978-3-662-13052-0. |
[13] |
show all references
References:
[1] |
E. Accinelli, S. London, L. Punzo and E. Sanchez, Dynamic complementarities, efficiency and nash equilibria for populations of firms and workers, Journal of Economics and Econometrics, 53 (2010), 90-110. |
[2] |
E. Accinelli, S. London, L. F. Punzo and E. J. S. Carrera, Poverty traps, rationality and evolution, Dynamics, Games and Science I, 1 (2011), 37-52.
doi: 10.1007/978-3-642-11456-4_4. |
[3] |
E. Accinelli, S. London and E. Sanchez, A model of imitative behaviour in the population of firms and workers, Technical Report, Department of Economics, University of Siena, 2009. |
[4] |
C. Azariadis and J. Stachurski, Chapter 5 poverty traps, in Handbook of Economic Growth, Vol. 1 (eds. P. Aghion and S. Durlauf), 2005, 295-384.
doi: 10.1016/S1574-0684(05)01005-1. |
[5] |
C. B. Barrett and B. M. Swallow, Fractal poverty traps, World Development, 34 (2006), 1-15.
doi: 10.1016/j.worlddev.2005.06.008. |
[6] |
G. Dahlquist, A. Bjorck and N. Anderson, Numerical Methods, Reprint edition, Dover Publications, 2003. |
[7] |
R. Darling and J. Norris, Differential equation approximations for Markov chains, Probability Surveys, 5 (2008), 37-79.
doi: 10.1214/07-PS121. |
[8] |
J. Dormand and P. Prince, A family of embedded Runge-Kutta formulae, Journal of Computational and Applied Mathematics, 6 (1980), 19-26.
doi: 10.1016/0771-050X(80)90013-3. |
[9] |
M. Hirsch and S. Smale, Differential Equations, Dynamical Systems, And Linear Algebra, Acad. Press, 1974. |
[10] |
J. Maynard Smith and G. R. Price, The logic of animal conflict, Nature, 246 (1973), 15-18.
doi: 10.1038/246015a0. |
[11] |
J. Nash, Non-cooperative games, The Annals of Mathematics, 54 (1951), 286-295.
doi: 10.2307/1969529. |
[12] |
P. Robert, Stochastic Networks and Queues, Springer, 2003.
doi: 10.1007/978-3-662-13052-0. |
[13] |
[1] |
Giorgio Calcagnini, Edgar J. Sanchez Carrera, Giuseppe Travaglini. Real option value and poverty trap. Journal of Dynamics and Games, 2020, 7 (4) : 317-333. doi: 10.3934/jdg.2020025 |
[2] |
Sylvain Sorin. Replicator dynamics: Old and new. Journal of Dynamics and Games, 2020, 7 (4) : 365-386. doi: 10.3934/jdg.2020028 |
[3] |
Andrew Vlasic. Long-run analysis of the stochastic replicator dynamics in the presence of random jumps. Journal of Dynamics and Games, 2018, 5 (4) : 283-309. doi: 10.3934/jdg.2018018 |
[4] |
Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics and Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537 |
[5] |
MirosŁaw Lachowicz, Tatiana Ryabukha. Equilibrium solutions for microscopic stochastic systems in population dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 777-786. doi: 10.3934/mbe.2013.10.777 |
[6] |
Mirosław Lachowicz, Andrea Quartarone, Tatiana V. Ryabukha. Stability of solutions of kinetic equations corresponding to the replicator dynamics. Kinetic and Related Models, 2014, 7 (1) : 109-119. doi: 10.3934/krm.2014.7.109 |
[7] |
Vassilis G. Papanicolaou, Kyriaki Vasilakopoulou. Similarity solutions of a multidimensional replicator dynamics integrodifferential equation. Journal of Dynamics and Games, 2016, 3 (1) : 51-74. doi: 10.3934/jdg.2016003 |
[8] |
Saul Mendoza-Palacios, Onésimo Hernández-Lerma. Stability of the replicator dynamics for games in metric spaces. Journal of Dynamics and Games, 2017, 4 (4) : 319-333. doi: 10.3934/jdg.2017017 |
[9] |
Sébastien Guisset. Angular moments models for rarefied gas dynamics. Numerical comparisons with kinetic and Navier-Stokes equations. Kinetic and Related Models, 2020, 13 (4) : 739-758. doi: 10.3934/krm.2020025 |
[10] |
Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153 |
[11] |
Yuanshi Wang, Hong Wu, Shigui Ruan. Global dynamics and bifurcations in a four-dimensional replicator system. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 259-271. doi: 10.3934/dcdsb.2013.18.259 |
[12] |
Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple\\ dimensional BSDEs. Mathematical Control and Related Fields, 2017, 7 (2) : 289-304. doi: 10.3934/mcrf.2017010 |
[13] |
Mei Ju Luo, Yi Zeng Chen. Smoothing and sample average approximation methods for solving stochastic generalized Nash equilibrium problems. Journal of Industrial and Management Optimization, 2016, 12 (1) : 1-15. doi: 10.3934/jimo.2016.12.1 |
[14] |
Bin Zhou, Hailin Sun. Two-stage stochastic variational inequalities for Cournot-Nash equilibrium with risk-averse players under uncertainty. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 521-535. doi: 10.3934/naco.2020049 |
[15] |
Yu Wu, Xiaopeng Zhao, Mingjun Zhang. Dynamics of stochastic mutation to immunodominance. Mathematical Biosciences & Engineering, 2012, 9 (4) : 937-952. doi: 10.3934/mbe.2012.9.937 |
[16] |
Jonathan Newton, William H. Sandholm. Stochastic dynamics and Edmonds' algorithm. Journal of Dynamics and Games, 2021 doi: 10.3934/jdg.2021029 |
[17] |
Jianhua Huang, Tianlong Shen, Yuhong Li. Dynamics of stochastic fractional Boussinesq equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2051-2067. doi: 10.3934/dcdsb.2015.20.2051 |
[18] |
Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics and Games, 2017, 4 (3) : 255-284. doi: 10.3934/jdg.2017015 |
[19] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics and Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[20] |
Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]