Citation: |
[1] |
A. Abdulkadiroǧlu and T. Sönmez, House allocation with existing tenants, Journal of Economic Theory, 88 (1999), 233-260. |
[2] |
A. Abdulkadiroǧlu and T. Sönmez, School choice: A mechanism design approach, The American Economic Review, 93 (2003), 729-747. |
[3] |
T. Andersson, C. Andersson and A. J. J. Talman, Sets in excess demand in ascending auctions with unit-demand bidders, CentER Discussion Paper, 51 (2010), 1-17. |
[4] |
C. Beviá, M. Quinzii and J. A. Silva, Buying several indivisible goods, Mathematical Social Sciences, 37 (1999), 1-23.doi: 10.1016/S0165-4896(98)00015-8. |
[5] |
A. Caplin and J. Leahy, A graph theoretic approach to markets for indivisible goods, Journal of Mathematical Economics, 52 (2014), 112-122.doi: 10.1016/j.jmateco.2014.03.011. |
[6] |
G. Demange and D. Gale, The strategy structure of two-sided matching markets, Econometrica, 53 (1985), 873-883.doi: 10.2307/1912658. |
[7] |
G. Demange, D. Gale and M. Sotomayor, Multi-item auctions, Journal of Political Economy, 94 (1986), 863-872.doi: 10.1086/261411. |
[8] |
S. Fujishige and Z. Yang, Existence of an equilibrium in a general competitive exchange economy with indivisible goods and money, Annals of Economics and Finance, 3 (2002), 135-147. |
[9] |
P. Hall, On representatives of subsets, Journal of London Mathematical Society, 10 (1935), 26-30. |
[10] |
Y. Hwang and M. Shih, Equilibrium in a market game, Economic Theory, 31 (2007), 387-392.doi: 10.1007/s00199-006-0098-2. |
[11] |
O. Kesten, Coalitional strategy-proofness and resource monotonicity for house allocation problems, International Journal of Game Theory, 38 (2009), 17-21.doi: 10.1007/s00182-008-0136-3. |
[12] |
F. Kojima and P. Pathak, Incentives and stability in large two-sided matching markets, American Economic Review, 99 (2009), 608-627.doi: 10.1257/aer.99.3.608. |
[13] |
S. Lars-Gunnar, Nash implementation of competitive equilibria in a model with indivisible goods, Econometrica, 59 (1991), 869-877.doi: 10.2307/2938231. |
[14] |
S. Morimoto and S. Serizawa, Strategy-proofness and efficiency with nonquasi-linear preferences: A characterization of minimum price walrasian rule, Theoretical Economics, 10 (2015), 445-487.doi: 10.3982/TE1470. |
[15] |
E. Miyagawa, House allocation with transfers, Journal of Economic Theory, 100 (2001), 329-355.doi: 10.1006/jeth.2000.2703. |
[16] |
M. Quinzii, Core and competitive equilibria with indivisibilities, International Journal of Game Theory, 13 (1984), 41-60.doi: 10.1007/BF01769864. |
[17] |
H. Saitoh, Existence of positive equilibrium price vectors in indivisible goods markets: A note, Mathematical Social Sciences, 48 (2004), 109-112.doi: 10.1016/j.mathsocsci.2003.12.003. |
[18] |
L. S. Shapley and H. E. Scarf, On cores and indivisibility, Journal of Mathematical Economics, 1 (1974), 23-37.doi: 10.1016/0304-4068(74)90033-0. |
[19] |
L. S. Shapley and M. Shubik, The assignment game I: The core, International Journal of Game Theory, 1 (1972), 111-130. |
[20] |
T. Sönmez and U. Ünver, House allocation with existing tenants: A characterization, Games and Economic Behavior, 69 (2010), 425-445.doi: 10.1016/j.geb.2009.10.010. |
[21] |
M. Sotomayor, A simultaneous descending bid auction for multiple items and unitary demand, Rev. Bras. Econ., 56 (2002), 497-510.doi: 10.1590/S0034-71402002000300006. |
[22] |
G. van der Laan, D. Talman and Z. Yang, Existence of an equilibrium in a competitive economy with indivisibilities and money, Journal of Mathematical Economics, 28 (1997), 101-109.doi: 10.1016/S0304-4068(97)83316-2. |
[23] |
J. Wako, Strong core and competitive equilibria of an exchange market with indivisible goods, International Economic Review, 32 (1991), 843-852.doi: 10.2307/2527037. |
[24] |
Z. Yang, A competitive market model for indivisible commodities, Economics Letters, 78 (2003), 41-47.doi: 10.1016/S0165-1765(02)00206-9. |