-
Previous Article
Externality effects in the formation of societies
- JDG Home
- This Issue
-
Next Article
Paths to stability in the assignment problem
A deferred acceptance algorithm with contracts
1. | Instituto de Matemtica Aplicada San Luis, IMASL, Universidad Nacional de San Luis and CONICET, Ejercito de los Andes 950. D5700HHW San Luis, Argentina |
References:
[1] |
C. Blair, The lattice structure of the set of stable matchings with Multiple Partners, Mathematics of Operations Research, 13 (1988), 619-628.
doi: 10.1287/moor.13.4.619. |
[2] |
D. Cantala, Restabilizing matching markets at senior level, Games and Economic Behavior, 48 (2004), 1-17.
doi: 10.1016/j.geb.2003.07.005. |
[3] |
C. Chambers and M. B. Yenmez, Choice and matching, working paper, 2014. |
[4] |
F. Echenique and J. Oviedo, A theory of stability in many-to-many matching markets, Theoretical Economics, 1 (2006), 233-273.
doi: 10.2139/ssrn.691443. |
[5] |
D. Gale and L. Shapley, College admissions and the stability of marriage, American Math Monthly, 69 (1962), 9-15.
doi: 10.2307/2312726. |
[6] |
D. Gusfield and R. Irving, The Stable Marriage Problem: Structure and Algorithms, Cambridge: MIT press, 1989. |
[7] |
J. Hatfield and P. Milgrom, Matching with contracts, The American Economic Review, 95 (2005), 913-935.
doi: 10.1257/0002828054825466. |
[8] |
J. Hatfield and S. Kominers, Contract design and stability in many to many matching, working paper, 2012. |
[9] |
R. Irving and P. Leather, The complexity of counting stable marriages, SIAM Journal of Computing, 15 (1986), 655-667.
doi: 10.1137/0215048. |
[10] |
A. Kelso and V. Crawford, Coalition formation and and gross substitutes, Econometrica, 50 (1982), 1483-1504. |
[11] |
B. Klaus and M. Walzl, Stable many-to-many matching with contracts, Journal of Mathematical Economics, 45 (2009), 422-434.
doi: 10.1016/j.jmateco.2009.03.007. |
[12] |
D. Knuth, Marriages Stables, Les Presses de l'Universite de Montr éal, 1976. |
[13] |
H. Konishi and M. U. Ünver, Credible group stability in many-to-many matching problems, Journal of Economic Theory, 129 (2006), 57-80.
doi: 10.1016/j.jet.2005.02.001. |
[14] |
R. Martinez, J. Massó, A. Neme and J. Oviedo, On the lattice structure of the set of stable matchings for a many-to-one model, Optimization, 50 (2001), 439-457.
doi: 10.1080/02331930108844574. |
[15] |
E. Pepa Risma, Binary operations and lattice structure for a model of matching with contracts, Mathematical Social Sciences, 73 (2015), 6-12.
doi: 10.1016/j.mathsocsci.2014.11.001. |
[16] |
A. Roth, Stability and polarization of interests in job matching, Econometrica, 52 (1984), 47-58.
doi: 10.2307/1911460. |
[17] |
A. Roth, Conflict and coincidence of interests in job matching, Operational Research, 10 (1985), 379-389.
doi: 10.1287/moor.10.3.379. |
[18] |
M. Sotomayor, A Non-constructive elementary proof of the existence of stable marriages, Games and Economic Behavior, 3 (1996), 135-137.
doi: 10.1006/game.1996.0029. |
[19] |
M. Sotomayor, Three remarks on the many-to-many stable matching problem, Mathematical Social Sciences, 38 (1999), 55-70.
doi: 10.1016/S0165-4896(98)00048-1. |
show all references
References:
[1] |
C. Blair, The lattice structure of the set of stable matchings with Multiple Partners, Mathematics of Operations Research, 13 (1988), 619-628.
doi: 10.1287/moor.13.4.619. |
[2] |
D. Cantala, Restabilizing matching markets at senior level, Games and Economic Behavior, 48 (2004), 1-17.
doi: 10.1016/j.geb.2003.07.005. |
[3] |
C. Chambers and M. B. Yenmez, Choice and matching, working paper, 2014. |
[4] |
F. Echenique and J. Oviedo, A theory of stability in many-to-many matching markets, Theoretical Economics, 1 (2006), 233-273.
doi: 10.2139/ssrn.691443. |
[5] |
D. Gale and L. Shapley, College admissions and the stability of marriage, American Math Monthly, 69 (1962), 9-15.
doi: 10.2307/2312726. |
[6] |
D. Gusfield and R. Irving, The Stable Marriage Problem: Structure and Algorithms, Cambridge: MIT press, 1989. |
[7] |
J. Hatfield and P. Milgrom, Matching with contracts, The American Economic Review, 95 (2005), 913-935.
doi: 10.1257/0002828054825466. |
[8] |
J. Hatfield and S. Kominers, Contract design and stability in many to many matching, working paper, 2012. |
[9] |
R. Irving and P. Leather, The complexity of counting stable marriages, SIAM Journal of Computing, 15 (1986), 655-667.
doi: 10.1137/0215048. |
[10] |
A. Kelso and V. Crawford, Coalition formation and and gross substitutes, Econometrica, 50 (1982), 1483-1504. |
[11] |
B. Klaus and M. Walzl, Stable many-to-many matching with contracts, Journal of Mathematical Economics, 45 (2009), 422-434.
doi: 10.1016/j.jmateco.2009.03.007. |
[12] |
D. Knuth, Marriages Stables, Les Presses de l'Universite de Montr éal, 1976. |
[13] |
H. Konishi and M. U. Ünver, Credible group stability in many-to-many matching problems, Journal of Economic Theory, 129 (2006), 57-80.
doi: 10.1016/j.jet.2005.02.001. |
[14] |
R. Martinez, J. Massó, A. Neme and J. Oviedo, On the lattice structure of the set of stable matchings for a many-to-one model, Optimization, 50 (2001), 439-457.
doi: 10.1080/02331930108844574. |
[15] |
E. Pepa Risma, Binary operations and lattice structure for a model of matching with contracts, Mathematical Social Sciences, 73 (2015), 6-12.
doi: 10.1016/j.mathsocsci.2014.11.001. |
[16] |
A. Roth, Stability and polarization of interests in job matching, Econometrica, 52 (1984), 47-58.
doi: 10.2307/1911460. |
[17] |
A. Roth, Conflict and coincidence of interests in job matching, Operational Research, 10 (1985), 379-389.
doi: 10.1287/moor.10.3.379. |
[18] |
M. Sotomayor, A Non-constructive elementary proof of the existence of stable marriages, Games and Economic Behavior, 3 (1996), 135-137.
doi: 10.1006/game.1996.0029. |
[19] |
M. Sotomayor, Three remarks on the many-to-many stable matching problem, Mathematical Social Sciences, 38 (1999), 55-70.
doi: 10.1016/S0165-4896(98)00048-1. |
[1] |
Luis Barreira, Claudia Valls. Stable manifolds with optimal regularity for difference equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1537-1555. doi: 10.3934/dcds.2012.32.1537 |
[2] |
T. J. Sullivan. Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors. Inverse Problems and Imaging, 2017, 11 (5) : 857-874. doi: 10.3934/ipi.2017040 |
[3] |
Qinglan Xia, Shaofeng Xu. On the ramified optimal allocation problem. Networks and Heterogeneous Media, 2013, 8 (2) : 591-624. doi: 10.3934/nhm.2013.8.591 |
[4] |
Tianyu Yang, Yang Yang. A stable non-iterative reconstruction algorithm for the acoustic inverse boundary value problem. Inverse Problems and Imaging, 2022, 16 (1) : 1-18. doi: 10.3934/ipi.2021038 |
[5] |
Rasul Shafikov, Christian Wolf. Stable sets, hyperbolicity and dimension. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 403-412. doi: 10.3934/dcds.2005.12.403 |
[6] |
E. Camouzis, H. Kollias, I. Leventides. Stable manifold market sequences. Journal of Dynamics and Games, 2018, 5 (2) : 165-185. doi: 10.3934/jdg.2018010 |
[7] |
Kenneth R. Meyer, Jesús F. Palacián, Patricia Yanguas. Normally stable hamiltonian systems. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1201-1214. doi: 10.3934/dcds.2013.33.1201 |
[8] |
Xiao Wen. Structurally stable homoclinic classes. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1693-1707. doi: 10.3934/dcds.2016.36.1693 |
[9] |
Alex Potapov, Ulrike E. Schlägel, Mark A. Lewis. Evolutionarily stable diffusive dispersal. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3319-3340. doi: 10.3934/dcdsb.2014.19.3319 |
[10] |
Fan Yuan, Dachuan Xu, Donglei Du, Min Li. An exact algorithm for stable instances of the $ k $-means problem with penalties in fixed-dimensional Euclidean space. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021122 |
[11] |
Meng Fan, Bingbing Zhang, Michael Yi Li. Mechanisms for stable coexistence in an insect community. Mathematical Biosciences & Engineering, 2010, 7 (3) : 603-622. doi: 10.3934/mbe.2010.7.603 |
[12] |
Thorsten Hüls. Computing stable hierarchies of fiber bundles. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3341-3367. doi: 10.3934/dcdsb.2017140 |
[13] |
Fuhito Kojima. Finding all stable matchings with couples. Journal of Dynamics and Games, 2015, 2 (3&4) : 321-330. doi: 10.3934/jdg.2015008 |
[14] |
Keonhee Lee, Kazumine Moriyasu, Kazuhiro Sakai. $C^1$-stable shadowing diffeomorphisms. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 683-697. doi: 10.3934/dcds.2008.22.683 |
[15] |
Nate Bottman, Bernard Deconinck. KdV cnoidal waves are spectrally stable. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1163-1180. doi: 10.3934/dcds.2009.25.1163 |
[16] |
Sujit Nair, Naomi Ehrich Leonard. Stable synchronization of rigid body networks. Networks and Heterogeneous Media, 2007, 2 (4) : 597-626. doi: 10.3934/nhm.2007.2.597 |
[17] |
M. W. Hirsch, Hal L. Smith. Asymptotically stable equilibria for monotone semiflows. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 385-398. doi: 10.3934/dcds.2006.14.385 |
[18] |
Gabriel Núñez, Jana Rodriguez Hertz. Minimality and stable Bernoulliness in dimension 3. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1879-1887. doi: 10.3934/dcds.2020097 |
[19] |
Juhi Jang, Jinmyoung Seok. Kinetic description of stable white dwarfs. Kinetic and Related Models, 2022, 15 (4) : 605-620. doi: 10.3934/krm.2021033 |
[20] |
Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial and Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]