-
Previous Article
Finding all stable matchings with couples
- JDG Home
- This Issue
-
Next Article
A deferred acceptance algorithm with contracts
Externality effects in the formation of societies
1. | LIAAD - INESC TEC and Department of Mathematics, Faculty of Science, University of Porto, Rua do Campo Alegre, 687, 4169-007 |
2. | Department of Mathematics, Faculty of Science, Birzeit University, Palestine |
References:
[1] |
L. Almeida, J. Cruz, H. Ferreira and A. A. Pinto, Bayesian-Nash equilibria in theory of planned behaviour, Journal of Difference Equations and Applications, 17 (2011), 1085-1093.
doi: 10.1080/10236190902902331. |
[2] |
A. V. Banerjee, A simple model of herd behavior, The Quarterly Journal of Economics, 107 (1992), 797-817.
doi: 10.2307/2118364. |
[3] |
B. D. Bernheim, A theory of conformity, Journal of Political Economy, 102 (1994), 841-877.
doi: 10.1086/261957. |
[4] |
M. Le Breton and S. Weber, Games of social interactions with local and global externalities, Economics Letters, 111 (2011), 88-90.
doi: 10.1016/j.econlet.2011.01.012. |
[5] |
J. G. Brida, M. J. Such-devesa, M. Faias and A. Pinto, Strategic Choice in Tourism with Differentiated Crowding Types, Economics Bulletin, 30 (2010), 1509-1515. |
[6] |
W. Brock and S. Durlauf, Discrete choice with social interactions, Review of Economic Studies, 68 (2011), 235-260.
doi: 10.1111/1467-937X.00168. |
[7] |
J. P. Conley and M. Wooders, Taste-homogeneity of optimal jurisdictions in a Tiebout economy with crowding types and endogenous educational investment choices, Ricerche Economiche, 50 (1996), 367-387.
doi: 10.1006/reco.1996.0024. |
[8] |
J. P. Conley and M. H. Wooders, Equivalence of the core and competitive equilibrium in a tiebout economy with crowding types, Journal of Urban Economics, 41 (1997), 421-440.
doi: 10.1006/juec.1996.2008. |
[9] |
J. P. Conley and M. H. Wooders, Tiebout economies with diferential inherent types and endogenously chosen crowding characteristics, Journal of Economic Theory, 98 (2001), 261-294.
doi: 10.1006/jeth.2000.2716. |
[10] |
R. Cooper and A. John, Coordinating coordination failures in keynesian models, The Quarterly Journal of Economics, 103 (1988), 441-463.
doi: 10.2307/1885539. |
[11] |
M. S. Granovetter, The strength of weak ties, American Journal of Sociology, 78 (1973), 1360-1380. |
[12] |
M. Granovetter, Threshold models of collective action, The American Journal of Sociology, 83 (1978), 1420-1443. |
[13] |
J. T. Howson, Equilibria of polymatrix games, Management Science, 18 (1972), 312-318. |
[14] |
H. Konishi, M. Le Breton and S. Weber, Equilibria in a model with partial rivalry, Journal Of Economic Theory, 72 (1997), 225-237.
doi: 10.1006/jeth.1996.2203. |
[15] |
H. Konishi, M. Le Breton and S. Weber, Pure strategy nash equilibrium in a group formation game with positive externalities, Games and Economic Behavior, 21 (1997), 161-182.
doi: 10.1006/game.1997.0542. |
[16] |
I. Milchtaich, Congestion models with player specific payoff functions, Games and Economic Behavior, 13 (1996), 111-124.
doi: 10.1006/game.1996.0027. |
[17] |
L. G. Quintas, A note on polymatrix games, International Journal of Game Theory, 18 (1989), 261-272.
doi: 10.1007/BF01254291. |
[18] |
T. Quint and S. Shubik, A Model of Migration, (1994) Working paper, Cowles Foundation, Yale University. |
[19] |
P. Ray, Independence of irrelevant alternatives, Econometrica, 41 (1973), 987-991.
doi: 10.2307/1913820. |
[20] |
R. W. Rosenthal, A class of games possessing pure-strategy nash equilibria, International Journal of Game Theory, 2 (1973), 65-67.
doi: 10.1007/BF01737559. |
[21] |
T. C. Schelling, Dynamic models of segregation, Journal of Mathematical Sociology, 1 (1971), 143-186.
doi: 10.1080/0022250X.1971.9989794. |
[22] |
T. C. Schelling, Hockey helmets, concealed weapons, and daylight savings- a study of binary choices with externalities, The journal of Conflict Resolution, 17 (1973), 381-428.
doi: 10.1177/002200277301700302. |
[23] |
R. Soeiro, A. Mousa, T. R. Oliveira and A. A. Pinto, Dynamics of human decisions, Journal of Dynamics and Games, 1 (2014), 121-151.
doi: 10.3934/jdg.2014.1.121. |
[24] |
M. H. Wooders, A tiebout theorem, Mathematical Social Sciences, 18 (1989), 33-55.
doi: 10.1016/0165-4896(89)90068-1. |
[25] |
M. H. Wooders, Equivalence of Lindahl equilibria with participation prices and the core, Economic Theory, 9 (1997), 115-127.
doi: 10.1007/BF01213446. |
[26] |
M. H. Wooders, Multijurisdictional economies, the Tiebout Hypothesis, and sorting, Proceedings of the National Academy of Sciences, 96 (1999), 10585-10587.
doi: 10.1073/pnas.96.19.10585. |
[27] |
M. Wooders, E. Cartwright and R. Selten, Behavioral conformity in games with many players, Games and Economic Behavior, 57 (2006), 347-360.
doi: 10.1016/j.geb.2005.09.006. |
[28] |
M. Wooders and E. Cartwright, Correlated equilibrium, conformity, and stereotyping in social groups, Journal of Public Economic Theory, 16 (2014), 743-766. |
show all references
References:
[1] |
L. Almeida, J. Cruz, H. Ferreira and A. A. Pinto, Bayesian-Nash equilibria in theory of planned behaviour, Journal of Difference Equations and Applications, 17 (2011), 1085-1093.
doi: 10.1080/10236190902902331. |
[2] |
A. V. Banerjee, A simple model of herd behavior, The Quarterly Journal of Economics, 107 (1992), 797-817.
doi: 10.2307/2118364. |
[3] |
B. D. Bernheim, A theory of conformity, Journal of Political Economy, 102 (1994), 841-877.
doi: 10.1086/261957. |
[4] |
M. Le Breton and S. Weber, Games of social interactions with local and global externalities, Economics Letters, 111 (2011), 88-90.
doi: 10.1016/j.econlet.2011.01.012. |
[5] |
J. G. Brida, M. J. Such-devesa, M. Faias and A. Pinto, Strategic Choice in Tourism with Differentiated Crowding Types, Economics Bulletin, 30 (2010), 1509-1515. |
[6] |
W. Brock and S. Durlauf, Discrete choice with social interactions, Review of Economic Studies, 68 (2011), 235-260.
doi: 10.1111/1467-937X.00168. |
[7] |
J. P. Conley and M. Wooders, Taste-homogeneity of optimal jurisdictions in a Tiebout economy with crowding types and endogenous educational investment choices, Ricerche Economiche, 50 (1996), 367-387.
doi: 10.1006/reco.1996.0024. |
[8] |
J. P. Conley and M. H. Wooders, Equivalence of the core and competitive equilibrium in a tiebout economy with crowding types, Journal of Urban Economics, 41 (1997), 421-440.
doi: 10.1006/juec.1996.2008. |
[9] |
J. P. Conley and M. H. Wooders, Tiebout economies with diferential inherent types and endogenously chosen crowding characteristics, Journal of Economic Theory, 98 (2001), 261-294.
doi: 10.1006/jeth.2000.2716. |
[10] |
R. Cooper and A. John, Coordinating coordination failures in keynesian models, The Quarterly Journal of Economics, 103 (1988), 441-463.
doi: 10.2307/1885539. |
[11] |
M. S. Granovetter, The strength of weak ties, American Journal of Sociology, 78 (1973), 1360-1380. |
[12] |
M. Granovetter, Threshold models of collective action, The American Journal of Sociology, 83 (1978), 1420-1443. |
[13] |
J. T. Howson, Equilibria of polymatrix games, Management Science, 18 (1972), 312-318. |
[14] |
H. Konishi, M. Le Breton and S. Weber, Equilibria in a model with partial rivalry, Journal Of Economic Theory, 72 (1997), 225-237.
doi: 10.1006/jeth.1996.2203. |
[15] |
H. Konishi, M. Le Breton and S. Weber, Pure strategy nash equilibrium in a group formation game with positive externalities, Games and Economic Behavior, 21 (1997), 161-182.
doi: 10.1006/game.1997.0542. |
[16] |
I. Milchtaich, Congestion models with player specific payoff functions, Games and Economic Behavior, 13 (1996), 111-124.
doi: 10.1006/game.1996.0027. |
[17] |
L. G. Quintas, A note on polymatrix games, International Journal of Game Theory, 18 (1989), 261-272.
doi: 10.1007/BF01254291. |
[18] |
T. Quint and S. Shubik, A Model of Migration, (1994) Working paper, Cowles Foundation, Yale University. |
[19] |
P. Ray, Independence of irrelevant alternatives, Econometrica, 41 (1973), 987-991.
doi: 10.2307/1913820. |
[20] |
R. W. Rosenthal, A class of games possessing pure-strategy nash equilibria, International Journal of Game Theory, 2 (1973), 65-67.
doi: 10.1007/BF01737559. |
[21] |
T. C. Schelling, Dynamic models of segregation, Journal of Mathematical Sociology, 1 (1971), 143-186.
doi: 10.1080/0022250X.1971.9989794. |
[22] |
T. C. Schelling, Hockey helmets, concealed weapons, and daylight savings- a study of binary choices with externalities, The journal of Conflict Resolution, 17 (1973), 381-428.
doi: 10.1177/002200277301700302. |
[23] |
R. Soeiro, A. Mousa, T. R. Oliveira and A. A. Pinto, Dynamics of human decisions, Journal of Dynamics and Games, 1 (2014), 121-151.
doi: 10.3934/jdg.2014.1.121. |
[24] |
M. H. Wooders, A tiebout theorem, Mathematical Social Sciences, 18 (1989), 33-55.
doi: 10.1016/0165-4896(89)90068-1. |
[25] |
M. H. Wooders, Equivalence of Lindahl equilibria with participation prices and the core, Economic Theory, 9 (1997), 115-127.
doi: 10.1007/BF01213446. |
[26] |
M. H. Wooders, Multijurisdictional economies, the Tiebout Hypothesis, and sorting, Proceedings of the National Academy of Sciences, 96 (1999), 10585-10587.
doi: 10.1073/pnas.96.19.10585. |
[27] |
M. Wooders, E. Cartwright and R. Selten, Behavioral conformity in games with many players, Games and Economic Behavior, 57 (2006), 347-360.
doi: 10.1016/j.geb.2005.09.006. |
[28] |
M. Wooders and E. Cartwright, Correlated equilibrium, conformity, and stereotyping in social groups, Journal of Public Economic Theory, 16 (2014), 743-766. |
[1] |
Carlos Hervés-Beloso, Emma Moreno-García. Market games and walrasian equilibria. Journal of Dynamics and Games, 2020, 7 (1) : 65-77. doi: 10.3934/jdg.2020004 |
[2] |
Fethallah Benmansour, Guillaume Carlier, Gabriel Peyré, Filippo Santambrogio. Numerical approximation of continuous traffic congestion equilibria. Networks and Heterogeneous Media, 2009, 4 (3) : 605-623. doi: 10.3934/nhm.2009.4.605 |
[3] |
Athanasios Kehagias. A note on the Nash equilibria of some multi-player reachability/safety games. Journal of Dynamics and Games, 2022, 9 (1) : 117-122. doi: 10.3934/jdg.2021028 |
[4] |
Sylvain Sorin, Cheng Wan. Finite composite games: Equilibria and dynamics. Journal of Dynamics and Games, 2016, 3 (1) : 101-120. doi: 10.3934/jdg.2016005 |
[5] |
Alejandra Fonseca-Morales, Onésimo Hernández-Lerma. A note on differential games with Pareto-optimal NASH equilibria: Deterministic and stochastic models†. Journal of Dynamics and Games, 2017, 4 (3) : 195-203. doi: 10.3934/jdg.2017012 |
[6] |
Filipe Martins, Alberto A. Pinto, Jorge Passamani Zubelli. Nash and social welfare impact in an international trade model. Journal of Dynamics and Games, 2017, 4 (2) : 149-173. doi: 10.3934/jdg.2017009 |
[7] |
Levon Nurbekyan. One-dimensional, non-local, first-order stationary mean-field games with congestion: A Fourier approach. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 963-990. doi: 10.3934/dcdss.2018057 |
[8] |
Nicola Bellomo, Livio Gibelli, Nisrine Outada. On the interplay between behavioral dynamics and social interactions in human crowds. Kinetic and Related Models, 2019, 12 (2) : 397-409. doi: 10.3934/krm.2019017 |
[9] |
Josu Doncel, Nicolas Gast, Bruno Gaujal. Discrete mean field games: Existence of equilibria and convergence. Journal of Dynamics and Games, 2019, 6 (3) : 221-239. doi: 10.3934/jdg.2019016 |
[10] |
Julien Dambrine, Nicolas Meunier, Bertrand Maury, Aude Roudneff-Chupin. A congestion model for cell migration. Communications on Pure and Applied Analysis, 2012, 11 (1) : 243-260. doi: 10.3934/cpaa.2012.11.243 |
[11] |
Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics and Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537 |
[12] |
Diogo Gomes, Marc Sedjro. One-dimensional, forward-forward mean-field games with congestion. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 901-914. doi: 10.3934/dcdss.2018054 |
[13] |
Jeremias Epperlein, Stefan Siegmund, Petr Stehlík, Vladimír Švígler. Coexistence equilibria of evolutionary games on graphs under deterministic imitation dynamics. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 803-813. doi: 10.3934/dcdsb.2016.21.803 |
[14] |
Beatris A. Escobedo-Trujillo. Discount-sensitive equilibria in zero-sum stochastic differential games. Journal of Dynamics and Games, 2016, 3 (1) : 25-50. doi: 10.3934/jdg.2016002 |
[15] |
Marco Di Francesco, Serikbolsyn Duisembay, Diogo Aguiar Gomes, Ricardo Ribeiro. Particle approximation of one-dimensional Mean-Field-Games with local interactions. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3569-3591. doi: 10.3934/dcds.2022025 |
[16] |
Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics and Games, 2017, 4 (3) : 255-284. doi: 10.3934/jdg.2017015 |
[17] |
Amy H. Lin. A model of tumor and lymphocyte interactions. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 241-266. doi: 10.3934/dcdsb.2004.4.241 |
[18] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics and Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[19] |
Samuel Drapeau, Peng Luo, Alexander Schied, Dewen Xiong. An FBSDE approach to market impact games with stochastic parameters. Probability, Uncertainty and Quantitative Risk, 2021, 6 (3) : 237-260. doi: 10.3934/puqr.2021012 |
[20] |
Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]