\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Finding all stable matchings with couples

Abstract Related Papers Cited by
  • In two-sided matching markets in which some doctors form couples, a stable matching does not necessarily exist.Wecharacterize the set of stable matchings as the fixed points of a function that is reminiscent of a tâtonnement process. Then we show that this function ismonotone decreasing with respect to a certain partialorder. Based on these results,wepresent an algorithm that finds all the stable matchings wheneverone exists, and otherwise demonstrates that there is no stable matching.
    Mathematics Subject Classification: Primary: 91B68; Secondary: 91A12.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Abdulkadiroglu, Y.-K. Che and Y. Yasuda, Resolving conflicting preferences in school choice: The 'boston' mechanism reconsidered, American Economic Review, (2009), 399-410.doi: 10.2139/ssrn.1465293.

    [2]

    A. Abdulkadiroglu, P. A. Pathak and A. E. Roth, Strategy-proofness versus efficiency in matching with indifferences: Redesigning the new york city high school match, American Economic Review, 99 (2009), 1954-1978.

    [3]

    A. Abdulkadiroǧlu and T. Sönmez, School choice: A mechanism design approach, American Economic Review, 93 (2003), 729-747.

    [4]

    H. Adachi, On a characterization of stable matchings, Economics Letters, 68 (2000), 43-49.doi: 10.1016/S0165-1765(99)00241-4.

    [5]

    I. Ashlagi, M. Braverman and A. Hassidim, Stability in large matching markets with complementarities, Operations Research, 62 (2014), 713-732.doi: 10.1287/opre.2014.1276.

    [6]

    E. M. Azevedo and J. W. Hatfield, Complementarity and multidimensional heterogeneity in matching markets, 2012, Mimeo.

    [7]

    M. Balinski and T. Sönmez, A tale of two mechanisms: student placement, Journal of Economic Theory, 84 (1999), 73-94.doi: 10.1006/jeth.1998.2469.

    [8]

    P. Biró, T. Fleiner, R. W. Irving and D. F. Manlove, The college admissions problem with lower and common quotas, Theoretical Computer Science, 411 (2010), 3136-3153.doi: 10.1016/j.tcs.2010.05.005.

    [9]

    P. Biró, T. Fleiner and R. Irving, Matching couples with scarf's algorithm, Institute of Economics, Hungarian Academy of Sciences.

    [10]

    P. Biró, R. W. Irving and I. Schlotter, Stable matching with couples: an empirical study, Journal of Experimental Algorithmics (JEA), 16 (2011), Article 1.2, 27 pp.doi: 10.1145/1963190.1963191.

    [11]

    P. Biró and F. Klijn, Matching with couples: A multidisciplinary survey, International Game Theory Review, 15 (2013), 1340008, 18 pp.doi: 10.1142/S0219198913400082.

    [12]

    P. Biró, D. F. Manlove and I. McBride, The hospitals/residents problem with couples: Complexity and integer programming models, in Experimental Algorithms, Springer, 2014, 10-21.

    [13]

    Y.-K. Che, J. Kim and F. Kojima, Stable Matching in Large Economies, Technical report, mimeo, 2013.

    [14]

    Y.-K. Che and F. Kojima, Asymptotic equivalence of probabilistic serial and random priority mechanisms, Econometrica, 78 (2010), 1625-1672.doi: 10.3982/ECTA8354.

    [15]

    B. Dutta and J. Masso, Stability of matchings when individuals have preferences over colleagues, Journal of Economic Theory, 75 (1997), 464-475.doi: 10.1006/jeth.1997.2291.

    [16]

    F. Echenique, Finding all equilibria in games with strategic complements, Journal of Economic Theory, 135 (2007), 514-532.doi: 10.1016/j.jet.2006.06.001.

    [17]

    F. Echenique and J. Oviedo, Core many-to-one matchings by fixed point methods, Journal of Economic Theory, 115 (2004), 358-376.doi: 10.1016/S0022-0531(04)00042-1.

    [18]

    F. Echenique and J. Oviedo, A theory of stability in many-to-many matching, Theoretical Economics, 1 (2006), 233-273.doi: 10.2139/ssrn.691443.

    [19]

    F. Echenique and M. B. Yenmez, A solution to matching with preferences over colleagues, Games and Economic Behavior, 59 (2007), 46-71.doi: 10.1016/j.geb.2006.07.003.

    [20]

    A. Erdil and H. Ergin, What's the matter with tie-breaking? improving efficiency in school choice, American Economic Review, 98 (2008), 669-689.doi: 10.1257/aer.98.3.669.

    [21]

    T. Fleiner, A fixed-point approach to stable matchings and some applications, Mathematics of Operations Research, 28 (2003), 103-126.doi: 10.1287/moor.28.1.103.14256.

    [22]

    D. Fragiadakis and P. Troyan, Market design under distributional constraints: Diversity in school choice and other applications, 2014, Mimeo.

    [23]

    D. Fragiadakis, A. Iwasaki, P. Troyan, S. Ueda and M. Yokoo, Strategyproof matching with minimum quotas, mimeo.

    [24]

    D. Gale and L. S. Shapley, College admissions and the stability of marriage, American Mathematical Monthly, 69 (1962), 9-15.doi: 10.2307/2312726.

    [25]

    D. Gale and M. A. O. Sotomayor, Ms. machiavelli and the stable matching problem, American Mathematical Monthly, 92 (1985), 261-268.doi: 10.2307/2323645.

    [26]

    D. Gale and M. A. O. Sotomayor, Some remarks on the stable matching problem, Discrete Applied Mathematics, 11 (1985), 223-232.doi: 10.1016/0166-218X(85)90074-5.

    [27]

    M. Goto, N. Hashimoto, A. Iwasaki, Y. Kawasaki, S. Ueda, Y. Yasuda and M. Yokoo, Strategy-proof matching with regional minimum quotas, in AAMAS2014, 2014.

    [28]

    M. Goto, A. Iwasaki, Y. Kawasaki, Y. Yasuda and M. Yokoo, Improving fairness and efficiency in matching markets with regional caps: Priority-list based deferred acceptance mechanism, Mimeo (the latest version is available at http://mpra.ub.uni-muenchen.de/53409/).

    [29]

    J. Hatfield and P. Milgrom, Matching with contracts, American Economic Review, 95 (2005), 913-935.doi: 10.1257/0002828054825466.

    [30]

    J. W. Hatfield and F. Kojima, Matching with contracts: Comment, American Economic Review, 98 (2008), 1189-1194.doi: 10.1257/aer.98.3.1189.

    [31]

    J. W. Hatfield and S. D. Kominers, Contract design and stability in matching markets, Harvard University and Stanford University working paper.

    [32]

    N. Immorlica and M. Mahdian, Marriage, honesty, and stability, Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, (electronic), ACM, New York, (2005), 53-62.

    [33]

    Y. Kamada and F. Kojima, Stability and strategy-proofness for matching with constraints: A problem in the japanese medical match and its solution, American Economic Review P&P, 102 (2012), 366-370.doi: 10.1257/aer.102.3.366.

    [34]

    Y. Kamada and F. Kojima, General theory of matching under distributional constraints, 2014, Mimeo.

    [35]

    Y. Kamada and F. Kojima, Stability concepts in matching with distributional constraints, 2014, Mimeo.

    [36]

    Y. Kamada and F. Kojima, Efficient matching under distributional constraints: Theory and applications, American Economic Review, 105 (2015), 67-99.doi: 10.1257/aer.20101552.

    [37]

    O. Kesten, School choice with consent, The Quarterly Journal of Economics, 125 (2010), 1297-1348.doi: 10.1162/qjec.2010.125.3.1297.

    [38]

    B. Klaus and F. Klijn, Stable matchings and preferences of couples, Journal of Economic Theory, 121 (2005), 75-106.doi: 10.1016/j.jet.2004.04.006.

    [39]

    B. Klaus, F. Klijn and J. Masso, Some things couples always wanted to know about stable matchings (but were afraid to ask), Review of Economic Design, 11 (2007), 175-184.doi: 10.1007/s10058-006-0017-9.

    [40]

    F. Kojima and P. A. Pathak, Incentives and stability in large two-sided matching markets, American Economic Review, 99 (2009), 608-627.doi: 10.1257/aer.99.3.608.

    [41]

    F. Kojima, P. A. Pathak and A. E. Roth, Matching with couples: Stability and incentives in large markets, Quarterly Journal of Economics, 128 (2013), 1585-1632.doi: 10.1093/qje/qjt019.

    [42]

    F. Kojima, A. Tamura and M. Yokoo, Designing matching mechanisms under constraints: An approach from discrete convex analysis, 2015, Mimeo.

    [43]

    H. Konishi and U. Unver, Credible group stability in multi-partner matching problems, Journal of Economic Theory, 129 (2006), 57-80.doi: 10.1016/j.jet.2005.02.001.

    [44]

    E. J. McDermid and D. F. Manlove, Keeping partners together: algorithmic results for the hospitals/residents problem with couples, Journal of Combinatorial Optimization, 19 (2010), 279-303.doi: 10.1007/s10878-009-9257-2.

    [45]

    D. G. McVitie and L. Wilson, Stable marriage assignments for unequal sets, BIT, 10 (1970), 295-309.doi: 10.1007/BF01934199.

    [46]

    T. Nguyen and R. Vohra, Near feasible stable matchings with complementarities, PIER Working Paper, 2014.doi: 10.2139/ssrn.2500824.

    [47]

    M. Ostrovsky, Stability in supply chain networks, American Economic Review, 897-923.

    [48]

    P. A. Pathak and T. Sönmez, Leveling the playing field: Sincere and sophisticated players in the boston mechanism, The American Economic Review, 98 (2008), 1636-1652.doi: 10.1257/aer.98.4.1636.

    [49]

    P. A. Pathak and T. Sönmez, School admissions reform in chicago and england: Comparing mechanisms by their vulnerability to manipulation, American Economic Review, 103 (2013), 80-106.doi: 10.1257/aer.103.1.80.

    [50]

    M. Pycia, Stability and preference alignment in matching and coalition formation, Econometrica, 80 (2012), 323-362.doi: 10.3982/ECTA7143.

    [51]

    E. Ronn, Np-complete stable matching problems, Journal of Algorithms, 11 (1990), 285-304.doi: 10.1016/0196-6774(90)90007-2.

    [52]

    A. E. Roth, The evolution of the labor market for medical interns and residents: A case study in game theory, Journal of Political Economy, 92 (1984), 991-1016.doi: 10.1086/261272.

    [53]

    A. E. Roth, On the allocation of residents to rural hospitals: A general property of two-sided matching markets, Econometrica, 54 (1986), 425-427.doi: 10.2307/1913160.

    [54]

    A. E. Roth, A natural experiment in the organization of entry-level labor markets: regional markets for new physicians and surgeons in the united kingdom, The American economic review, 415-440.

    [55]

    A. E. Roth and E. Peranson, The redesign of the matching market for american physicians: Some engineering aspects of economic design, American Economic Review, 89 (1999), 748-780.doi: 10.1257/aer.89.4.748.

    [56]

    A. E. Roth and M. A. Sotomayor, Two-sided Matching: A Study in Game-Theoretic Modeling and Analysis, Econometric Society monographs, Cambridge, 1990.doi: 10.1017/CCOL052139015X.

    [57]

    T. Sönmez and M. U. Ünver, Course bidding at business schools, International Economic Review, 51 (2010), 99-123.doi: 10.1111/j.1468-2354.2009.00572.x.

    [58]

    M. A. O. Sotomayor, A non-constructive elementary proof of the existence of stable marriages, Games and Economic Behavior, 13 (1996), 135-137.doi: 10.1006/game.1996.0029.

    [59]

    M. A. O. Sotomayor, Three remarks on the many-to-many stable matching problem, Mathematical social sciences, 38 (1999), 55-70.doi: 10.1016/S0165-4896(98)00048-1.

    [60]

    M. A. O. Sotomayor, Implementation in the many-to-many matching market, Games and Economic Behavior, 46 (2004), 199-212.doi: 10.1016/S0899-8256(03)00047-2.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(294) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return