- Previous Article
- JDG Home
- This Issue
-
Next Article
Dynamic club formation with coordination
For claims problems, another compromise between the proportional and constrained equal awards rules
1. | Department of Economics, University of Rochester, Rochester, NY 14627, United States |
References:
[1] |
R. Aumann and M. Maschler, Game theoretic analysis of a bankruptcy problem from the Talmud, J. Econ. Theory, 36 (1985), 195-213.
doi: 10.1016/0022-0531(85)90102-4. |
[2] |
K. Bosmans and L. Lauwers, Lorenz comparisons of nine rules for the adjudication of conflicting claims, Int. J. Game Theory, 40 (2011), 791-807.
doi: 10.1007/s00182-010-0269-z. |
[3] |
A. Cappelen, R. I. Luttens, E. Sorensen and B. Tungodden, Fairness in Bankruptcy Situations: An Experimental Study, mimeo, 2015.
doi: 10.2139/ssrn.2649022. |
[4] |
C. Chambers and J. Moreno-Ternero, Taxation and poverty, Soc. Choice Wel., forthcoming, 2015, 1-23.
doi: 10.1007/s00355-015-0905-4. |
[5] |
C. Chambers and W. Thomson, Group order preservation and the proportional rule for bankruptcy problems, Math. Soc. Sci., 44 (2002), 235-252.
doi: 10.1016/S0165-4896(02)00038-0. |
[6] |
S. Chen, Systematic favorability in claims problems with indivisibilities, Soc. Choice Welf., 44 (2015), 283-300.
doi: 10.1007/s00355-014-0828-5. |
[7] |
Y. Chun, The proportional solution for rights problem, Math. Soc. Sci., 15 (1988), 231-246.
doi: 10.1016/0165-4896(88)90009-1. |
[8] |
I. Curiel, M. Maschler and S. H. Tijs, Bankruptcy games, Zeitschrift für Op. Research, 31 (1987), A143-A159.
doi: 10.1007/BF02109593. |
[9] |
N. Dagan, R. Serrano and O. Volij, A non-cooperative view of consistent bankruptcy rules, Games Econ. Behavior, 18 (1997), 55-72.
doi: 10.1006/game.1997.0526. |
[10] |
N. Dagan and O. Volij, The bankruptcy problem: A cooperative bargaining approach, Math. Soc. Sci., 26 (1993), 287-297.
doi: 10.1016/0165-4896(93)90024-D. |
[11] |
S. Ertemel and R. Kumar, Ex-ante versus ex-post proportional rules for state contingent claims, mimeo, 2014. |
[12] |
K. Flores-Szwagrzak, Priority classes and weighted constrained equal awards rules for the claims problem, J. Econ. Theory, 160 (2015), 36-55.
doi: 10.1016/j.jet.2015.08.008. |
[13] |
J. M. Giménez-Gómez and J. Peris, A proportional approach to claims problems with a guaranteed minimum, European J. Oper. Res., 232 (2014), 109-116.
doi: 10.1016/j.ejor.2013.06.039. |
[14] |
P. Harless, Generalized proportional rules for adjudicating conflicting claims, mimeo, 2015. |
[15] |
C. Herrero and A. Villar, Sustainability in bankruptcy problems, TOP, 10 (2002), 261-273.
doi: 10.1007/BF02579019. |
[16] |
T. Hokari and W. Thomson, On properties of division rules lifted by bilateral consistency, J. Math. Econom., 44 (2008), 1057-1071.
doi: 10.1016/j.jmateco.2008.01.001. |
[17] |
J. L. Hougaard and L. Thorlund-Peterson, Bankruptcy rules, inequality, and uncertainty, mimeo, 2001. |
[18] |
B.-G. Ju, E. Miyagawa and T. Sakai, Non-manipulable division rules in claims problems and generalizations, J. Econ. Theory, 132 (2007), 1-26.
doi: 10.1016/j.jet.2005.08.003. |
[19] |
J. Moreno-Ternero and A. Villar, The Talmud rule and the securement of agents' awards, Math. Soc. Sci., 47 (2004), 245-257.
doi: 10.1016/S0165-4896(03)00087-8. |
[20] |
J. Moreno-Ternero and A. Villar, The TAL-family of rules for bankruptcy problems, Soc. Choice Welf., 27 (2006), 231-249.
doi: 10.1007/s00355-006-0121-3. |
[21] |
J. Moreno-Ternero and A. Villar, On the relative equitability of a family of taxation rules, J. Pub. Econ. Theory, 8 (2006), 283-291.
doi: 10.1111/j.1467-9779.2006.00264.x. |
[22] |
H. Moulin, Equal or proportional division of a surplus, and other methods, Int. J. Game Theory, 16 (1987), 161-186.
doi: 10.1007/BF01756289. |
[23] |
H. Moulin, Priority rules and other asymmetric rationing methods, Econometrica, 68 (2000), 643-684.
doi: 10.1111/1468-0262.00126. |
[24] |
B. O'Neill, A problem of rights arbitration from the Talmud, Math. Soc Sci., 2 (1982), 345-371.
doi: 10.1016/0165-4896(82)90029-4. |
[25] |
J. Stovall, Collective rationality and monotone path division rules, J. Econ. Theory, 154 (2014), 1-24.
doi: 10.1016/j.jet.2014.08.003. |
[26] |
W. Thomson, Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: A survey, Math. Soc. Sci., 45 (2003), 249-297.
doi: 10.1016/S0165-4896(02)00070-7. |
[27] |
W. Thomson, How To Divide When There Isn't Enough, mimeo, 2006. |
[28] |
W. Thomson, On the existence of consistent rules to adjudicate conflicting claims: A geometric approach, Rev. Econ. Design, 11 (2007), 225-251.
doi: 10.1007/s10058-007-0027-2. |
[29] |
W. Thomson, Two families of rules for the adjudication of conflicting claims, Soc. Choice Welf., 31 (2008), 667-692.
doi: 10.1007/s00355-008-0302-3. |
[30] |
W. Thomson, Lorenz rankings of rules for the adjudication of conflicting claims, Econ. Theory, 50 (2012), 547-569.
doi: 10.1007/s00199-010-0575-5. |
[31] |
W. Thomson, On the axiomatics of resource allocation: Interpreting the consistency principle, Econ. Phil., 28 (2012), 385-421.
doi: 10.1017/S0266267112000296. |
[32] | |
[33] |
W. Thomson, Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: A survey, Math. Social Sci., 45 (2013), 249-297.
doi: 10.1016/S0165-4896(02)00070-7. |
[34] |
W. Thomson, For claims problems, compromising between the proportional and constrained equal awards rules, Econ. Theory, 60 (2015), 495-520.
doi: 10.1007/s00199-015-0888-5. |
[35] |
J. Xue, Claim uncertainty and egalitarian division with wastage, mimeo, 2015. |
[36] |
P. Young, On dividing an amount according to individual claims or liabilities, Math. Op. Research, 12 (1987), 398-414.
doi: 10.1287/moor.12.3.398. |
[37] |
P. Young, Distributive justice in taxation, J. Econ .Theory, 44 (1988), 321-335.
doi: 10.1016/0022-0531(88)90007-5. |
show all references
References:
[1] |
R. Aumann and M. Maschler, Game theoretic analysis of a bankruptcy problem from the Talmud, J. Econ. Theory, 36 (1985), 195-213.
doi: 10.1016/0022-0531(85)90102-4. |
[2] |
K. Bosmans and L. Lauwers, Lorenz comparisons of nine rules for the adjudication of conflicting claims, Int. J. Game Theory, 40 (2011), 791-807.
doi: 10.1007/s00182-010-0269-z. |
[3] |
A. Cappelen, R. I. Luttens, E. Sorensen and B. Tungodden, Fairness in Bankruptcy Situations: An Experimental Study, mimeo, 2015.
doi: 10.2139/ssrn.2649022. |
[4] |
C. Chambers and J. Moreno-Ternero, Taxation and poverty, Soc. Choice Wel., forthcoming, 2015, 1-23.
doi: 10.1007/s00355-015-0905-4. |
[5] |
C. Chambers and W. Thomson, Group order preservation and the proportional rule for bankruptcy problems, Math. Soc. Sci., 44 (2002), 235-252.
doi: 10.1016/S0165-4896(02)00038-0. |
[6] |
S. Chen, Systematic favorability in claims problems with indivisibilities, Soc. Choice Welf., 44 (2015), 283-300.
doi: 10.1007/s00355-014-0828-5. |
[7] |
Y. Chun, The proportional solution for rights problem, Math. Soc. Sci., 15 (1988), 231-246.
doi: 10.1016/0165-4896(88)90009-1. |
[8] |
I. Curiel, M. Maschler and S. H. Tijs, Bankruptcy games, Zeitschrift für Op. Research, 31 (1987), A143-A159.
doi: 10.1007/BF02109593. |
[9] |
N. Dagan, R. Serrano and O. Volij, A non-cooperative view of consistent bankruptcy rules, Games Econ. Behavior, 18 (1997), 55-72.
doi: 10.1006/game.1997.0526. |
[10] |
N. Dagan and O. Volij, The bankruptcy problem: A cooperative bargaining approach, Math. Soc. Sci., 26 (1993), 287-297.
doi: 10.1016/0165-4896(93)90024-D. |
[11] |
S. Ertemel and R. Kumar, Ex-ante versus ex-post proportional rules for state contingent claims, mimeo, 2014. |
[12] |
K. Flores-Szwagrzak, Priority classes and weighted constrained equal awards rules for the claims problem, J. Econ. Theory, 160 (2015), 36-55.
doi: 10.1016/j.jet.2015.08.008. |
[13] |
J. M. Giménez-Gómez and J. Peris, A proportional approach to claims problems with a guaranteed minimum, European J. Oper. Res., 232 (2014), 109-116.
doi: 10.1016/j.ejor.2013.06.039. |
[14] |
P. Harless, Generalized proportional rules for adjudicating conflicting claims, mimeo, 2015. |
[15] |
C. Herrero and A. Villar, Sustainability in bankruptcy problems, TOP, 10 (2002), 261-273.
doi: 10.1007/BF02579019. |
[16] |
T. Hokari and W. Thomson, On properties of division rules lifted by bilateral consistency, J. Math. Econom., 44 (2008), 1057-1071.
doi: 10.1016/j.jmateco.2008.01.001. |
[17] |
J. L. Hougaard and L. Thorlund-Peterson, Bankruptcy rules, inequality, and uncertainty, mimeo, 2001. |
[18] |
B.-G. Ju, E. Miyagawa and T. Sakai, Non-manipulable division rules in claims problems and generalizations, J. Econ. Theory, 132 (2007), 1-26.
doi: 10.1016/j.jet.2005.08.003. |
[19] |
J. Moreno-Ternero and A. Villar, The Talmud rule and the securement of agents' awards, Math. Soc. Sci., 47 (2004), 245-257.
doi: 10.1016/S0165-4896(03)00087-8. |
[20] |
J. Moreno-Ternero and A. Villar, The TAL-family of rules for bankruptcy problems, Soc. Choice Welf., 27 (2006), 231-249.
doi: 10.1007/s00355-006-0121-3. |
[21] |
J. Moreno-Ternero and A. Villar, On the relative equitability of a family of taxation rules, J. Pub. Econ. Theory, 8 (2006), 283-291.
doi: 10.1111/j.1467-9779.2006.00264.x. |
[22] |
H. Moulin, Equal or proportional division of a surplus, and other methods, Int. J. Game Theory, 16 (1987), 161-186.
doi: 10.1007/BF01756289. |
[23] |
H. Moulin, Priority rules and other asymmetric rationing methods, Econometrica, 68 (2000), 643-684.
doi: 10.1111/1468-0262.00126. |
[24] |
B. O'Neill, A problem of rights arbitration from the Talmud, Math. Soc Sci., 2 (1982), 345-371.
doi: 10.1016/0165-4896(82)90029-4. |
[25] |
J. Stovall, Collective rationality and monotone path division rules, J. Econ. Theory, 154 (2014), 1-24.
doi: 10.1016/j.jet.2014.08.003. |
[26] |
W. Thomson, Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: A survey, Math. Soc. Sci., 45 (2003), 249-297.
doi: 10.1016/S0165-4896(02)00070-7. |
[27] |
W. Thomson, How To Divide When There Isn't Enough, mimeo, 2006. |
[28] |
W. Thomson, On the existence of consistent rules to adjudicate conflicting claims: A geometric approach, Rev. Econ. Design, 11 (2007), 225-251.
doi: 10.1007/s10058-007-0027-2. |
[29] |
W. Thomson, Two families of rules for the adjudication of conflicting claims, Soc. Choice Welf., 31 (2008), 667-692.
doi: 10.1007/s00355-008-0302-3. |
[30] |
W. Thomson, Lorenz rankings of rules for the adjudication of conflicting claims, Econ. Theory, 50 (2012), 547-569.
doi: 10.1007/s00199-010-0575-5. |
[31] |
W. Thomson, On the axiomatics of resource allocation: Interpreting the consistency principle, Econ. Phil., 28 (2012), 385-421.
doi: 10.1017/S0266267112000296. |
[32] | |
[33] |
W. Thomson, Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: A survey, Math. Social Sci., 45 (2013), 249-297.
doi: 10.1016/S0165-4896(02)00070-7. |
[34] |
W. Thomson, For claims problems, compromising between the proportional and constrained equal awards rules, Econ. Theory, 60 (2015), 495-520.
doi: 10.1007/s00199-015-0888-5. |
[35] |
J. Xue, Claim uncertainty and egalitarian division with wastage, mimeo, 2015. |
[36] |
P. Young, On dividing an amount according to individual claims or liabilities, Math. Op. Research, 12 (1987), 398-414.
doi: 10.1287/moor.12.3.398. |
[37] |
P. Young, Distributive justice in taxation, J. Econ .Theory, 44 (1988), 321-335.
doi: 10.1016/0022-0531(88)90007-5. |
[1] |
Kevin Kuo, Phong Luu, Duy Nguyen, Eric Perkerson, Katherine Thompson, Qing Zhang. Pairs trading: An optimal selling rule. Mathematical Control and Related Fields, 2015, 5 (3) : 489-499. doi: 10.3934/mcrf.2015.5.489 |
[2] |
Mehmet Onur Olgun, Osman Palanci, Sirma Zeynep Alparslan Gök. On the grey Baker-Thompson rule. Journal of Dynamics and Games, 2020, 7 (4) : 303-315. doi: 10.3934/jdg.2020024 |
[3] |
Piotr Jaworski, Marcin Pitera. The 20-60-20 rule. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1149-1166. doi: 10.3934/dcdsb.2016.21.1149 |
[4] |
Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064 |
[5] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems and Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[6] |
Vladimir Georgiev, Koichi Taniguchi. On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1101-1115. doi: 10.3934/dcds.2019046 |
[7] |
Regina S. Burachik, C. Yalçın Kaya. An update rule and a convergence result for a penalty function method. Journal of Industrial and Management Optimization, 2007, 3 (2) : 381-398. doi: 10.3934/jimo.2007.3.381 |
[8] |
Andreas Asheim, Alfredo Deaño, Daan Huybrechs, Haiyong Wang. A Gaussian quadrature rule for oscillatory integrals on a bounded interval. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 883-901. doi: 10.3934/dcds.2014.34.883 |
[9] |
Hoi Tin Kong, Qing Zhang. An optimal trading rule of a mean-reverting asset. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1403-1417. doi: 10.3934/dcdsb.2010.14.1403 |
[10] |
Jingzhi Tie, Qing Zhang. Switching between a pair of stocks: An optimal trading rule. Mathematical Control and Related Fields, 2018, 8 (3&4) : 965-999. doi: 10.3934/mcrf.2018042 |
[11] |
Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control and Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012 |
[12] |
João Correia-da-Silva, Joana Pinho. The profit-sharing rule that maximizes sustainability of cartel agreements. Journal of Dynamics and Games, 2016, 3 (2) : 143-151. doi: 10.3934/jdg.2016007 |
[13] |
Ayla Sayli, Ayse Oncu Sarihan. Statistical query-based rule derivation system by backward elimination algorithm. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1341-1356. doi: 10.3934/dcdss.2015.8.1341 |
[14] |
Frederik Riis Mikkelsen. A model based rule for selecting spiking thresholds in neuron models. Mathematical Biosciences & Engineering, 2016, 13 (3) : 569-578. doi: 10.3934/mbe.2016008 |
[15] |
Sanjit Kumar Mohanty, Rajani Ballav Dash. A quadrature rule of Lobatto-Gaussian for numerical integration of analytic functions. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021031 |
[16] |
Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374 |
[17] |
Yuanyao Ding, Zudi Lu. The optimal portfolios based on a modified safety-first rule with risk-free saving. Journal of Industrial and Management Optimization, 2016, 12 (1) : 83-102. doi: 10.3934/jimo.2016.12.83 |
[18] |
Akane Kawaharada. Singular function emerging from one-dimensional elementary cellular automaton Rule 150. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2115-2128. doi: 10.3934/dcdsb.2021125 |
[19] |
Xinliang An, Avy Soffer. Fermi's golden rule and $ H^1 $ scattering for nonlinear Klein-Gordon equations with metastable states. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 331-373. doi: 10.3934/dcds.2020013 |
[20] |
Xiaodi Bai, Xiaojin Zheng, Xiaoling Sun. A survey on probabilistically constrained optimization problems. Numerical Algebra, Control and Optimization, 2012, 2 (4) : 767-778. doi: 10.3934/naco.2012.2.767 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]