April  2015, 2(3&4): 363-382. doi: 10.3934/jdg.2015011

For claims problems, another compromise between the proportional and constrained equal awards rules

1. 

Department of Economics, University of Rochester, Rochester, NY 14627, United States

Received  July 2015 Revised  October 2015 Published  November 2015

For the problem of adjudicating conflicting claims, we propose to compromise in the two-claimant case between the proportional and constrained equal awards rules by taking, for each problem, a weighted average of the awards vectors these two rules recommend. We allow the weights to depend on the claims vector, thereby generating a large family of rules. We identify the members of the family that satisfy particular properties.We then ask whether the rules can be extended topopulations of arbitrary sizes by imposing ``consistency": the recommendation made foreach problem should be ``in agreement" with the recommendation madefor each reduced problem that results when some claimants have received theirawards and left. We show that only the proportional and constrained equal awards rules qualify.We also study a dual compromise between the proportional and constrained equal losses rules.
Citation: William Thomson. For claims problems, another compromise between the proportional and constrained equal awards rules. Journal of Dynamics and Games, 2015, 2 (3&4) : 363-382. doi: 10.3934/jdg.2015011
References:
[1]

R. Aumann and M. Maschler, Game theoretic analysis of a bankruptcy problem from the Talmud, J. Econ. Theory, 36 (1985), 195-213. doi: 10.1016/0022-0531(85)90102-4.

[2]

K. Bosmans and L. Lauwers, Lorenz comparisons of nine rules for the adjudication of conflicting claims, Int. J. Game Theory, 40 (2011), 791-807. doi: 10.1007/s00182-010-0269-z.

[3]

A. Cappelen, R. I. Luttens, E. Sorensen and B. Tungodden, Fairness in Bankruptcy Situations: An Experimental Study, mimeo, 2015. doi: 10.2139/ssrn.2649022.

[4]

C. Chambers and J. Moreno-Ternero, Taxation and poverty, Soc. Choice Wel., forthcoming, 2015, 1-23. doi: 10.1007/s00355-015-0905-4.

[5]

C. Chambers and W. Thomson, Group order preservation and the proportional rule for bankruptcy problems, Math. Soc. Sci., 44 (2002), 235-252. doi: 10.1016/S0165-4896(02)00038-0.

[6]

S. Chen, Systematic favorability in claims problems with indivisibilities, Soc. Choice Welf., 44 (2015), 283-300. doi: 10.1007/s00355-014-0828-5.

[7]

Y. Chun, The proportional solution for rights problem, Math. Soc. Sci., 15 (1988), 231-246. doi: 10.1016/0165-4896(88)90009-1.

[8]

I. Curiel, M. Maschler and S. H. Tijs, Bankruptcy games, Zeitschrift für Op. Research, 31 (1987), A143-A159. doi: 10.1007/BF02109593.

[9]

N. Dagan, R. Serrano and O. Volij, A non-cooperative view of consistent bankruptcy rules, Games Econ. Behavior, 18 (1997), 55-72. doi: 10.1006/game.1997.0526.

[10]

N. Dagan and O. Volij, The bankruptcy problem: A cooperative bargaining approach, Math. Soc. Sci., 26 (1993), 287-297. doi: 10.1016/0165-4896(93)90024-D.

[11]

S. Ertemel and R. Kumar, Ex-ante versus ex-post proportional rules for state contingent claims, mimeo, 2014.

[12]

K. Flores-Szwagrzak, Priority classes and weighted constrained equal awards rules for the claims problem, J. Econ. Theory, 160 (2015), 36-55. doi: 10.1016/j.jet.2015.08.008.

[13]

J. M. Giménez-Gómez and J. Peris, A proportional approach to claims problems with a guaranteed minimum, European J. Oper. Res., 232 (2014), 109-116. doi: 10.1016/j.ejor.2013.06.039.

[14]

P. Harless, Generalized proportional rules for adjudicating conflicting claims, mimeo, 2015.

[15]

C. Herrero and A. Villar, Sustainability in bankruptcy problems, TOP, 10 (2002), 261-273. doi: 10.1007/BF02579019.

[16]

T. Hokari and W. Thomson, On properties of division rules lifted by bilateral consistency, J. Math. Econom., 44 (2008), 1057-1071. doi: 10.1016/j.jmateco.2008.01.001.

[17]

J. L. Hougaard and L. Thorlund-Peterson, Bankruptcy rules, inequality, and uncertainty, mimeo, 2001.

[18]

B.-G. Ju, E. Miyagawa and T. Sakai, Non-manipulable division rules in claims problems and generalizations, J. Econ. Theory, 132 (2007), 1-26. doi: 10.1016/j.jet.2005.08.003.

[19]

J. Moreno-Ternero and A. Villar, The Talmud rule and the securement of agents' awards, Math. Soc. Sci., 47 (2004), 245-257. doi: 10.1016/S0165-4896(03)00087-8.

[20]

J. Moreno-Ternero and A. Villar, The TAL-family of rules for bankruptcy problems, Soc. Choice Welf., 27 (2006), 231-249. doi: 10.1007/s00355-006-0121-3.

[21]

J. Moreno-Ternero and A. Villar, On the relative equitability of a family of taxation rules, J. Pub. Econ. Theory, 8 (2006), 283-291. doi: 10.1111/j.1467-9779.2006.00264.x.

[22]

H. Moulin, Equal or proportional division of a surplus, and other methods, Int. J. Game Theory, 16 (1987), 161-186. doi: 10.1007/BF01756289.

[23]

H. Moulin, Priority rules and other asymmetric rationing methods, Econometrica, 68 (2000), 643-684. doi: 10.1111/1468-0262.00126.

[24]

B. O'Neill, A problem of rights arbitration from the Talmud, Math. Soc Sci., 2 (1982), 345-371. doi: 10.1016/0165-4896(82)90029-4.

[25]

J. Stovall, Collective rationality and monotone path division rules, J. Econ. Theory, 154 (2014), 1-24. doi: 10.1016/j.jet.2014.08.003.

[26]

W. Thomson, Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: A survey, Math. Soc. Sci., 45 (2003), 249-297. doi: 10.1016/S0165-4896(02)00070-7.

[27]

W. Thomson, How To Divide When There Isn't Enough, mimeo, 2006.

[28]

W. Thomson, On the existence of consistent rules to adjudicate conflicting claims: A geometric approach, Rev. Econ. Design, 11 (2007), 225-251. doi: 10.1007/s10058-007-0027-2.

[29]

W. Thomson, Two families of rules for the adjudication of conflicting claims, Soc. Choice Welf., 31 (2008), 667-692. doi: 10.1007/s00355-008-0302-3.

[30]

W. Thomson, Lorenz rankings of rules for the adjudication of conflicting claims, Econ. Theory, 50 (2012), 547-569. doi: 10.1007/s00199-010-0575-5.

[31]

W. Thomson, On the axiomatics of resource allocation: Interpreting the consistency principle, Econ. Phil., 28 (2012), 385-421. doi: 10.1017/S0266267112000296.

[32]

W. Thomson, Consistent Allocation Rules, mimeo, 2012c.

[33]

W. Thomson, Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: A survey, Math. Social Sci., 45 (2013), 249-297. doi: 10.1016/S0165-4896(02)00070-7.

[34]

W. Thomson, For claims problems, compromising between the proportional and constrained equal awards rules, Econ. Theory, 60 (2015), 495-520. doi: 10.1007/s00199-015-0888-5.

[35]

J. Xue, Claim uncertainty and egalitarian division with wastage, mimeo, 2015.

[36]

P. Young, On dividing an amount according to individual claims or liabilities, Math. Op. Research, 12 (1987), 398-414. doi: 10.1287/moor.12.3.398.

[37]

P. Young, Distributive justice in taxation, J. Econ .Theory, 44 (1988), 321-335. doi: 10.1016/0022-0531(88)90007-5.

show all references

References:
[1]

R. Aumann and M. Maschler, Game theoretic analysis of a bankruptcy problem from the Talmud, J. Econ. Theory, 36 (1985), 195-213. doi: 10.1016/0022-0531(85)90102-4.

[2]

K. Bosmans and L. Lauwers, Lorenz comparisons of nine rules for the adjudication of conflicting claims, Int. J. Game Theory, 40 (2011), 791-807. doi: 10.1007/s00182-010-0269-z.

[3]

A. Cappelen, R. I. Luttens, E. Sorensen and B. Tungodden, Fairness in Bankruptcy Situations: An Experimental Study, mimeo, 2015. doi: 10.2139/ssrn.2649022.

[4]

C. Chambers and J. Moreno-Ternero, Taxation and poverty, Soc. Choice Wel., forthcoming, 2015, 1-23. doi: 10.1007/s00355-015-0905-4.

[5]

C. Chambers and W. Thomson, Group order preservation and the proportional rule for bankruptcy problems, Math. Soc. Sci., 44 (2002), 235-252. doi: 10.1016/S0165-4896(02)00038-0.

[6]

S. Chen, Systematic favorability in claims problems with indivisibilities, Soc. Choice Welf., 44 (2015), 283-300. doi: 10.1007/s00355-014-0828-5.

[7]

Y. Chun, The proportional solution for rights problem, Math. Soc. Sci., 15 (1988), 231-246. doi: 10.1016/0165-4896(88)90009-1.

[8]

I. Curiel, M. Maschler and S. H. Tijs, Bankruptcy games, Zeitschrift für Op. Research, 31 (1987), A143-A159. doi: 10.1007/BF02109593.

[9]

N. Dagan, R. Serrano and O. Volij, A non-cooperative view of consistent bankruptcy rules, Games Econ. Behavior, 18 (1997), 55-72. doi: 10.1006/game.1997.0526.

[10]

N. Dagan and O. Volij, The bankruptcy problem: A cooperative bargaining approach, Math. Soc. Sci., 26 (1993), 287-297. doi: 10.1016/0165-4896(93)90024-D.

[11]

S. Ertemel and R. Kumar, Ex-ante versus ex-post proportional rules for state contingent claims, mimeo, 2014.

[12]

K. Flores-Szwagrzak, Priority classes and weighted constrained equal awards rules for the claims problem, J. Econ. Theory, 160 (2015), 36-55. doi: 10.1016/j.jet.2015.08.008.

[13]

J. M. Giménez-Gómez and J. Peris, A proportional approach to claims problems with a guaranteed minimum, European J. Oper. Res., 232 (2014), 109-116. doi: 10.1016/j.ejor.2013.06.039.

[14]

P. Harless, Generalized proportional rules for adjudicating conflicting claims, mimeo, 2015.

[15]

C. Herrero and A. Villar, Sustainability in bankruptcy problems, TOP, 10 (2002), 261-273. doi: 10.1007/BF02579019.

[16]

T. Hokari and W. Thomson, On properties of division rules lifted by bilateral consistency, J. Math. Econom., 44 (2008), 1057-1071. doi: 10.1016/j.jmateco.2008.01.001.

[17]

J. L. Hougaard and L. Thorlund-Peterson, Bankruptcy rules, inequality, and uncertainty, mimeo, 2001.

[18]

B.-G. Ju, E. Miyagawa and T. Sakai, Non-manipulable division rules in claims problems and generalizations, J. Econ. Theory, 132 (2007), 1-26. doi: 10.1016/j.jet.2005.08.003.

[19]

J. Moreno-Ternero and A. Villar, The Talmud rule and the securement of agents' awards, Math. Soc. Sci., 47 (2004), 245-257. doi: 10.1016/S0165-4896(03)00087-8.

[20]

J. Moreno-Ternero and A. Villar, The TAL-family of rules for bankruptcy problems, Soc. Choice Welf., 27 (2006), 231-249. doi: 10.1007/s00355-006-0121-3.

[21]

J. Moreno-Ternero and A. Villar, On the relative equitability of a family of taxation rules, J. Pub. Econ. Theory, 8 (2006), 283-291. doi: 10.1111/j.1467-9779.2006.00264.x.

[22]

H. Moulin, Equal or proportional division of a surplus, and other methods, Int. J. Game Theory, 16 (1987), 161-186. doi: 10.1007/BF01756289.

[23]

H. Moulin, Priority rules and other asymmetric rationing methods, Econometrica, 68 (2000), 643-684. doi: 10.1111/1468-0262.00126.

[24]

B. O'Neill, A problem of rights arbitration from the Talmud, Math. Soc Sci., 2 (1982), 345-371. doi: 10.1016/0165-4896(82)90029-4.

[25]

J. Stovall, Collective rationality and monotone path division rules, J. Econ. Theory, 154 (2014), 1-24. doi: 10.1016/j.jet.2014.08.003.

[26]

W. Thomson, Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: A survey, Math. Soc. Sci., 45 (2003), 249-297. doi: 10.1016/S0165-4896(02)00070-7.

[27]

W. Thomson, How To Divide When There Isn't Enough, mimeo, 2006.

[28]

W. Thomson, On the existence of consistent rules to adjudicate conflicting claims: A geometric approach, Rev. Econ. Design, 11 (2007), 225-251. doi: 10.1007/s10058-007-0027-2.

[29]

W. Thomson, Two families of rules for the adjudication of conflicting claims, Soc. Choice Welf., 31 (2008), 667-692. doi: 10.1007/s00355-008-0302-3.

[30]

W. Thomson, Lorenz rankings of rules for the adjudication of conflicting claims, Econ. Theory, 50 (2012), 547-569. doi: 10.1007/s00199-010-0575-5.

[31]

W. Thomson, On the axiomatics of resource allocation: Interpreting the consistency principle, Econ. Phil., 28 (2012), 385-421. doi: 10.1017/S0266267112000296.

[32]

W. Thomson, Consistent Allocation Rules, mimeo, 2012c.

[33]

W. Thomson, Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: A survey, Math. Social Sci., 45 (2013), 249-297. doi: 10.1016/S0165-4896(02)00070-7.

[34]

W. Thomson, For claims problems, compromising between the proportional and constrained equal awards rules, Econ. Theory, 60 (2015), 495-520. doi: 10.1007/s00199-015-0888-5.

[35]

J. Xue, Claim uncertainty and egalitarian division with wastage, mimeo, 2015.

[36]

P. Young, On dividing an amount according to individual claims or liabilities, Math. Op. Research, 12 (1987), 398-414. doi: 10.1287/moor.12.3.398.

[37]

P. Young, Distributive justice in taxation, J. Econ .Theory, 44 (1988), 321-335. doi: 10.1016/0022-0531(88)90007-5.

[1]

Kevin Kuo, Phong Luu, Duy Nguyen, Eric Perkerson, Katherine Thompson, Qing Zhang. Pairs trading: An optimal selling rule. Mathematical Control and Related Fields, 2015, 5 (3) : 489-499. doi: 10.3934/mcrf.2015.5.489

[2]

Mehmet Onur Olgun, Osman Palanci, Sirma Zeynep Alparslan Gök. On the grey Baker-Thompson rule. Journal of Dynamics and Games, 2020, 7 (4) : 303-315. doi: 10.3934/jdg.2020024

[3]

Piotr Jaworski, Marcin Pitera. The 20-60-20 rule. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1149-1166. doi: 10.3934/dcdsb.2016.21.1149

[4]

Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064

[5]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems and Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[6]

Vladimir Georgiev, Koichi Taniguchi. On fractional Leibniz rule for Dirichlet Laplacian in exterior domain. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1101-1115. doi: 10.3934/dcds.2019046

[7]

Regina S. Burachik, C. Yalçın Kaya. An update rule and a convergence result for a penalty function method. Journal of Industrial and Management Optimization, 2007, 3 (2) : 381-398. doi: 10.3934/jimo.2007.3.381

[8]

Andreas Asheim, Alfredo Deaño, Daan Huybrechs, Haiyong Wang. A Gaussian quadrature rule for oscillatory integrals on a bounded interval. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 883-901. doi: 10.3934/dcds.2014.34.883

[9]

Hoi Tin Kong, Qing Zhang. An optimal trading rule of a mean-reverting asset. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1403-1417. doi: 10.3934/dcdsb.2010.14.1403

[10]

Jingzhi Tie, Qing Zhang. Switching between a pair of stocks: An optimal trading rule. Mathematical Control and Related Fields, 2018, 8 (3&4) : 965-999. doi: 10.3934/mcrf.2018042

[11]

Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control and Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012

[12]

João Correia-da-Silva, Joana Pinho. The profit-sharing rule that maximizes sustainability of cartel agreements. Journal of Dynamics and Games, 2016, 3 (2) : 143-151. doi: 10.3934/jdg.2016007

[13]

Ayla Sayli, Ayse Oncu Sarihan. Statistical query-based rule derivation system by backward elimination algorithm. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1341-1356. doi: 10.3934/dcdss.2015.8.1341

[14]

Frederik Riis Mikkelsen. A model based rule for selecting spiking thresholds in neuron models. Mathematical Biosciences & Engineering, 2016, 13 (3) : 569-578. doi: 10.3934/mbe.2016008

[15]

Sanjit Kumar Mohanty, Rajani Ballav Dash. A quadrature rule of Lobatto-Gaussian for numerical integration of analytic functions. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021031

[16]

Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374

[17]

Yuanyao Ding, Zudi Lu. The optimal portfolios based on a modified safety-first rule with risk-free saving. Journal of Industrial and Management Optimization, 2016, 12 (1) : 83-102. doi: 10.3934/jimo.2016.12.83

[18]

Akane Kawaharada. Singular function emerging from one-dimensional elementary cellular automaton Rule 150. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2115-2128. doi: 10.3934/dcdsb.2021125

[19]

Xinliang An, Avy Soffer. Fermi's golden rule and $ H^1 $ scattering for nonlinear Klein-Gordon equations with metastable states. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 331-373. doi: 10.3934/dcds.2020013

[20]

Xiaodi Bai, Xiaojin Zheng, Xiaoling Sun. A survey on probabilistically constrained optimization problems. Numerical Algebra, Control and Optimization, 2012, 2 (4) : 767-778. doi: 10.3934/naco.2012.2.767

 Impact Factor: 

Metrics

  • PDF downloads (160)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]