Advanced Search
Article Contents
Article Contents

Discount-sensitive equilibria in zero-sum stochastic differential games

Abstract Related Papers Cited by
  • We consider infinite-horizon zero-sum stochastic differential games with average payoff criteria, discount -sensitive criteria and, infinite-horizon undiscounted reward criteria which are sensitive to the growth rate of finite-horizon payoffs. These criteria include, average reward optimality, strong 0-discount optimality, strong -1-discount optimality, 0-discount optimality, bias optimality, F-strong average optimality and overtaking optimality. The main objective is to give conditions under which these criteria are interrelated.
    Mathematics Subject Classification: Primary: 91A10, 91A15, 91A25.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Arapostathis and V. Borkar, Uniform recurrence properties of controlled diffusions and applications to optimal control, SIAM J. Control Optim., 48 (2010), 4181-4223.doi: 10.1137/090762464.


    A. Arapostathis, M. Ghosh and V. Borkar, Ergodic Control of Diffusion Processes, Vol. 143, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2012.


    A. Arapostathis, V. Borkar and K. Surech, Relative value iteration for stochastic differential games, arXiv:1210.8188v2, Advances in Dynamic Games, 13 (2013), 3-27.doi: 10.1007/978-3-319-02690-9_1.


    M. Bardi, Explicit solutions of some linear-quadratic mean field games. Networks and heterogeneous media, American Institute of Mathematical Sciences, 7 (2012), 243-261.doi: 10.3934/nhm.2012.7.243.


    V. Borkar and M. Ghosh, Stochastic differential games: Occupation measure based approach, J. Optim. Theory Appl., 73 (1992), 359-385. Correction: 88 (1996), 251-252.doi: 10.1007/BF00940187.


    R. Cavazos-Cadena and J. B. Lasserre, Strong 1-optimal stationary policies in denumerable Markov decision processes, Syst. Control Lett., 11 (1988), 65-71.doi: 10.1016/0167-6911(88)90113-2.


    B. Escobedo-Trujillo, D. López-Barrientos and O. Hernández-Lerma, Bias and overtaking equilibria for zero-sum stochastic differential games, J. Optim. Theory Appl., 153 (2012), 662-687.doi: 10.1007/s10957-011-9974-4.


    B. Escobedo-Trujillo and J. López-Barrientos, Nonzero-sum stochastic differential games with additive structure and average payoffs, Journal of Dynamics and Games, 1 (2014), 555-578.doi: 10.3934/jdg.2014.1.555.


    K. Fan, Fixed-point and minimax theorems in locally convex linear spaces, Proc. N.A.S.U.S.A., 38 (1952), 121-126.doi: 10.1073/pnas.38.2.121.


    A. Friedman, Stochastic Differential Equations and Applications, Vol. 1, Academic Press, New York, 1975.


    J. Flynn, On optimality criteria for dynamic programs with long finite horizons, J. Math. Anal. Appl., 76 (1980), 202-208.doi: 10.1016/0022-247X(80)90072-4.


    M. Ghosh, A. Arapostathis and S. Marcus, Ergodic control of switching diffusions, SIAM J. Control Optim., 35 (1997), 1952-1988.doi: 10.1137/S0363012996299302.


    O. Hernández-Lerma and O. Vega-Amaya, Infinite-horizon Markov control processes with undiscounted cost criteria: from average to overtaking optimality, Appl. Math. (Warsaw), 25 (1998), 153-178.


    O. Hernández-Lerma and J. Lasserre, Further Topics on Discrete-Time Markov Control Processes, Springer, New York, 1999.doi: 10.1007/978-1-4612-0561-6.


    N. Hilgert and O. Hernández-Lerma, Bias optimality versus strong 0-discount optimality in Markov control processes with unbounded costs, Acta Applicandae Mathematicae, 77 (2003), 215-235.doi: 10.1023/A:1024996308133.


    H. Jasso-Fuentes and O. Hernández-Lerma, Characterizations of overtaking optimality for controlled diffusion processes, Appl. Math. Optim., 57 (2008), 349-369.doi: 10.1007/s00245-007-9025-6.


    H. Jasso-Fuentes and O. Hernández-Lerma, Ergodic control, bias, and sensitive discount optimality for Markov diffusion processes, Stochatic Analysis and Applications, 27 (2009), 363-385.doi: 10.1080/07362990802679034.


    H. Jasso-Fuentes, J. López-Barrientos and B. Escobedo-Trujilo, Infinite horizon nonzero-sum stochastic differential games with additive structure, IMA J. Math. Control Inform. doi: 10.1093/imamci/dnv045, (2015).


    S. Meyn and R. Tweedie, Stability of Markovian processes. III. Foster-Lyapunov criteria for continuous-time precesses, Adv. Appl. Prob., 25 (1993), 518-548.doi: 10.2307/1427522.


    H. Morimoto and M. Ohashi, On linear stochastic differential games with average cost criterions, J. Optim. Theory Appl., 64 (1990), 127-140.doi: 10.1007/BF00940027.


    A. Nowak, Sensitive equilibria for ergodic stochastic games with countable state spaces, Math. Meth. Oper. Res., 50 (1999), 65-76.


    A. Nowak, Optimal strategies in a class of zero-sum ergodic stochastic games, Math. Meth. Oper. Res., 50 (1999), 399-419.doi: 10.1007/s001860050078.


    A. Nowak, Remark on sensitive equilibria in stochastic games with additive reward and transition structure, Math. Meth. Oper. Res., 64 (2006), 481-494.doi: 10.1007/s00186-006-0090-4.


    T. Prieto-Rumeau and O. Hernández-Lerma, Bias and overtaking equilibria for zero-sum continuous-time Markov games, Math. Meth. Oper. Res., 61 (2005), 437-454.doi: 10.1007/s001860400392.


    T. Prieto-Rumeau and O. Hernández-Lerma, The Laurent series, sensitive discount and Blackwell optimality for continuous-time controlled Markov chains, Math. Meth. Oper. Res., 61 (2005), 123-145.doi: 10.1007/s001860400393.


    M. Puterman, Sensitive discount optimality in controlled one-dimensional diffusions, Annals of Probability, 2 (1974), 408-419.doi: 10.1214/aop/1176996656.


    W. Qingda and C. Xian, Strong average optimality criterion for continuos-time Markov decision processes, Kybernetika, 50 (2014), 950-977.


    M. Sion, On general minimax theorems, Pacific J. Math., 8 (1958), 171-176.doi: 10.2140/pjm.1958.8.171.


    W. Schmitendorf, Differential games without pure strategy saddle-point solutions, J. Optim. Theory Appl., 18 (1976), 81-92.doi: 10.1007/BF00933796.


    Q. Zhu and X. Guo, Another set of conditions for strong $n$ ($n=-1,0$) discount optimality in Markov decision processes, Stochastic Analysis and Applications, 23 (2005), 953-974.doi: 10.1080/07362990500184865.


    Q. Zhu, Bias optimality and strong $n$ ($n=-1,0$) discount optimality for Markov decision processes, J. Math. Anal. Appl., 334 (2007), 576-592.doi: 10.1016/j.jmaa.2007.01.002.

  • 加载中

Article Metrics

HTML views() PDF downloads(174) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint