January  2016, 3(1): 75-100. doi: 10.3934/jdg.2016004

Local market structure in a Hotelling town

1. 

LIAAD INESC TEC and Department of Mathematics, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal

2. 

LIAAD-INESC TEC and Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal

3. 

Department of Mathematics, University of Minho, Campus de Gualtar Braga, Portugal

Received  October 2015 Revised  January 2016 Published  March 2016

We develop a theoretical framework to study the location-price competition in a Hotelling-type network game, extending the Hotelling model, with linear transportation costs, from a line (city) to a network (town). We show the existence of a pure Nash equilibrium price if, and only if, some explicit conditions on the production costs and on the network structure hold. Furthermore, we prove that the local optimal localization of the firms are at the cross-roads of the town.
Citation: Alberto A. Pinto, João P. Almeida, Telmo Parreira. Local market structure in a Hotelling town. Journal of Dynamics and Games, 2016, 3 (1) : 75-100. doi: 10.3934/jdg.2016004
References:
[1]

V. Aguirregabiria and G. Vicentini, Dynamic spatial competition between multi-store firms, mimeo., (2015).

[2]

C. D'Aspermont, J. Gabszewicz and J. F. Thisse, On Hotelling's "Stability in competition'', Econometrica, 47 (1979), 1145-1150. doi: 10.2307/1911955.

[3]

F. Bloch and N. Quérou, Pricing in social networks, Games Econom. Behav., 80 (2013), 243-261. doi: 10.1016/j.geb.2013.03.006.

[4]

Y. Bramoullé, R. Kranton and M. D'Amours, Strategic interaction and networks, American Economic Review, 104 (2012), 898-930.

[5]

T. H. Colding and W. P. Minicozzi, Minimal Surfaces, Courant Lecture Notes in Math, (1999).

[6]

Y. Chen and M. H. Riordan, Price and variety in the spokes model, Economic Journal, Royal Economic Society, 117 (2007), 897-921. doi: 10.1111/j.1468-0297.2007.02063.x.

[7]

G. Fournier and M. Scarsini, Hotelling's Games on Networks: Efficiency of Equilibria, Centre d'Economie de la Sorbone, 2014.

[8]

A. Galeotti, S. Goyal and M. Jackson and F. Vega-Redondo and L. Yariv, Network games, The Review of Economic Studies, 77 (2010), 218-244. doi: 10.1111/j.1467-937X.2009.00570.x.

[9]

A. Galeotti and F. Vega-Redondo, Complex networks and local externalities: A strategic approach, International Journal of Economic Theory, 7 (2011), 77-92. doi: 10.1111/j.1742-7363.2010.00149.x.

[10]

S. Goyal, Connections: An introduction to the Economics of Networks, Princeton University Press, (2007).

[11]

R. Gulliver, Removability of singular points on surfaces of bounded mean curvature, The Journal of Differential Geometry, 11 (1976), 345-350.

[12]

D. Graitson, Spatial competition á la Hotelling: A selective survey, The Journal of Industrial Economics, 31 (1982), 11-25. doi: 10.2307/2098001.

[13]

H. Hotelling, Stability in competition, The Economic Journal, 39 (1929), 41-57.

[14]

M. Jorge and W. Maldonado, Price Differentiation and Menu Costs in Credit Card Payments, ANU Working Papers in Economics and Econometrics 2012-592, Australian National University, college of business and economics, school of economics, (2012).

[15]

V. Mazalov and M. Sakaguchi, Location game on the plane, International Game Theory Review, 5 (2003), 13-25. doi: 10.1142/S0219198903000854.

[16]

T. Miller, R. L. Tobin and T. L. Friesz, Network facility-location models in stackelberg-nash-cournot spatial competition, Papers in Regional Science, 71 (1992), 277-291.

[17]

M. J. Osborne and C. Pitchick, Equilibrium in hotelling's model of spatial competition, Econometrica, 55 (1987), 911-922. doi: 10.2307/1911035.

[18]

D. Palvogyi, Hotelling on graphs, mimeo, 2011.

[19]

A. A. Pinto and T. Parreira, A hotelling-type network, in Dynamics, Games and Science I. (Eds. M. Peixoto, A. Pinto and D. Rand), Proceedings in Mathematics Series, Springer-Verlag, 1 (2011), 709-720. doi: 10.1007/978-3-642-11456-4_45.

[20]

A. A. Pinto and T. Parreira, Optimal localization of firms in Hotelling networks, in Modeling, Dynamics, Optimization and Bioeconomy I (Eds. A.A. Pinto and D. Zilberman). Springer Proceedings in Mathematics and Statistics series, Springer-Verlag, 73 (2014), 567-583. doi: 10.1007/978-3-319-04849-9_2.

[21]

A. A. Pinto and T. Parreira, Complete versus incomplete information in the Hotelling model, in Modeling, Dynamics, Optimization and Bioeconomy I (Eds. A.A. Pinto and D. Zilberman). Springer Proceedings in Mathematics and Statistics series, Springer-Verlag, 73 (2014), 17-22. doi: 10.1007/978-3-319-04849-9_33.

[22]

A. A. Pinto and T. Parreira, Maximal differentiation in the Hotelling model with uncertainty, in Modeling, Dynamics, Optimization and Bioeconomy I (Eds. A.A. Pinto and D. Zilberman). Springer Proceedings in Mathematics and Statistics series, Springer-Verlag, 73 (2014), 585-600. doi: 10.1007/978-3-319-04849-9_34.

[23]

A. A. Pinto and T. Parreira, Price competition in the Hotelling model with uncertainty on costs, Optimization: A Journal of Mathematical Programming and Operations Research, 64 (2015), 2477-2493. doi: 10.1080/02331934.2014.917304.

[24]

A. A. Pinto, Game theory and duopoly models,, in preparation., (). 

[25]

S. Salop, Monopolistic competition with outside goods, Bell Journal of Economics, 10 (1979), 141-156. doi: 10.2307/3003323.

[26]

A. Soetevent, Price Competition on Graphs, Tinbergen Institute Discussion Papers 10-126/1, (2010).

[27]

T. Tabuchi and J. F. Thisse, Asymmetric equilibria in spatial competition, International Journal of Economic Theory, 13 (1995), 213-227. doi: 10.1016/0167-7187(94)00449-C.

show all references

References:
[1]

V. Aguirregabiria and G. Vicentini, Dynamic spatial competition between multi-store firms, mimeo., (2015).

[2]

C. D'Aspermont, J. Gabszewicz and J. F. Thisse, On Hotelling's "Stability in competition'', Econometrica, 47 (1979), 1145-1150. doi: 10.2307/1911955.

[3]

F. Bloch and N. Quérou, Pricing in social networks, Games Econom. Behav., 80 (2013), 243-261. doi: 10.1016/j.geb.2013.03.006.

[4]

Y. Bramoullé, R. Kranton and M. D'Amours, Strategic interaction and networks, American Economic Review, 104 (2012), 898-930.

[5]

T. H. Colding and W. P. Minicozzi, Minimal Surfaces, Courant Lecture Notes in Math, (1999).

[6]

Y. Chen and M. H. Riordan, Price and variety in the spokes model, Economic Journal, Royal Economic Society, 117 (2007), 897-921. doi: 10.1111/j.1468-0297.2007.02063.x.

[7]

G. Fournier and M. Scarsini, Hotelling's Games on Networks: Efficiency of Equilibria, Centre d'Economie de la Sorbone, 2014.

[8]

A. Galeotti, S. Goyal and M. Jackson and F. Vega-Redondo and L. Yariv, Network games, The Review of Economic Studies, 77 (2010), 218-244. doi: 10.1111/j.1467-937X.2009.00570.x.

[9]

A. Galeotti and F. Vega-Redondo, Complex networks and local externalities: A strategic approach, International Journal of Economic Theory, 7 (2011), 77-92. doi: 10.1111/j.1742-7363.2010.00149.x.

[10]

S. Goyal, Connections: An introduction to the Economics of Networks, Princeton University Press, (2007).

[11]

R. Gulliver, Removability of singular points on surfaces of bounded mean curvature, The Journal of Differential Geometry, 11 (1976), 345-350.

[12]

D. Graitson, Spatial competition á la Hotelling: A selective survey, The Journal of Industrial Economics, 31 (1982), 11-25. doi: 10.2307/2098001.

[13]

H. Hotelling, Stability in competition, The Economic Journal, 39 (1929), 41-57.

[14]

M. Jorge and W. Maldonado, Price Differentiation and Menu Costs in Credit Card Payments, ANU Working Papers in Economics and Econometrics 2012-592, Australian National University, college of business and economics, school of economics, (2012).

[15]

V. Mazalov and M. Sakaguchi, Location game on the plane, International Game Theory Review, 5 (2003), 13-25. doi: 10.1142/S0219198903000854.

[16]

T. Miller, R. L. Tobin and T. L. Friesz, Network facility-location models in stackelberg-nash-cournot spatial competition, Papers in Regional Science, 71 (1992), 277-291.

[17]

M. J. Osborne and C. Pitchick, Equilibrium in hotelling's model of spatial competition, Econometrica, 55 (1987), 911-922. doi: 10.2307/1911035.

[18]

D. Palvogyi, Hotelling on graphs, mimeo, 2011.

[19]

A. A. Pinto and T. Parreira, A hotelling-type network, in Dynamics, Games and Science I. (Eds. M. Peixoto, A. Pinto and D. Rand), Proceedings in Mathematics Series, Springer-Verlag, 1 (2011), 709-720. doi: 10.1007/978-3-642-11456-4_45.

[20]

A. A. Pinto and T. Parreira, Optimal localization of firms in Hotelling networks, in Modeling, Dynamics, Optimization and Bioeconomy I (Eds. A.A. Pinto and D. Zilberman). Springer Proceedings in Mathematics and Statistics series, Springer-Verlag, 73 (2014), 567-583. doi: 10.1007/978-3-319-04849-9_2.

[21]

A. A. Pinto and T. Parreira, Complete versus incomplete information in the Hotelling model, in Modeling, Dynamics, Optimization and Bioeconomy I (Eds. A.A. Pinto and D. Zilberman). Springer Proceedings in Mathematics and Statistics series, Springer-Verlag, 73 (2014), 17-22. doi: 10.1007/978-3-319-04849-9_33.

[22]

A. A. Pinto and T. Parreira, Maximal differentiation in the Hotelling model with uncertainty, in Modeling, Dynamics, Optimization and Bioeconomy I (Eds. A.A. Pinto and D. Zilberman). Springer Proceedings in Mathematics and Statistics series, Springer-Verlag, 73 (2014), 585-600. doi: 10.1007/978-3-319-04849-9_34.

[23]

A. A. Pinto and T. Parreira, Price competition in the Hotelling model with uncertainty on costs, Optimization: A Journal of Mathematical Programming and Operations Research, 64 (2015), 2477-2493. doi: 10.1080/02331934.2014.917304.

[24]

A. A. Pinto, Game theory and duopoly models,, in preparation., (). 

[25]

S. Salop, Monopolistic competition with outside goods, Bell Journal of Economics, 10 (1979), 141-156. doi: 10.2307/3003323.

[26]

A. Soetevent, Price Competition on Graphs, Tinbergen Institute Discussion Papers 10-126/1, (2010).

[27]

T. Tabuchi and J. F. Thisse, Asymmetric equilibria in spatial competition, International Journal of Economic Theory, 13 (1995), 213-227. doi: 10.1016/0167-7187(94)00449-C.

[1]

Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417

[2]

Ali Naimi-Sadigh, S. Kamal Chaharsooghi, Marzieh Mozafari. Optimal pricing and advertising decisions with suppliers' oligopoly competition: Stakelberg-Nash game structures. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1423-1450. doi: 10.3934/jimo.2020028

[3]

Serap Ergün, Bariş Bülent Kırlar, Sırma Zeynep Alparslan Gök, Gerhard-Wilhelm Weber. An application of crypto cloud computing in social networks by cooperative game theory. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1927-1941. doi: 10.3934/jimo.2019036

[4]

Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic and Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187

[5]

Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure and Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981

[6]

Alberto A. Pinto, Telmo Parreira. Localization and prices in the quadratic Hotelling model with uncertainty. Journal of Dynamics and Games, 2016, 3 (2) : 121-142. doi: 10.3934/jdg.2016006

[7]

Amina-Aicha Khennaoui, A. Othman Almatroud, Adel Ouannas, M. Mossa Al-sawalha, Giuseppe Grassi, Viet-Thanh Pham. The effect of caputo fractional difference operator on a novel game theory model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4549-4565. doi: 10.3934/dcdsb.2020302

[8]

Ying Wang, Haohao Song. A game theoretic strategic model for understanding the online-offline competition and fairness concern under community group buying. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022012

[9]

Jose S. Cánovas, María Muñoz-Guillermo. Monopoly conditions in a Cournot-Theocharis oligopoly model under adaptive expectations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2817-2831. doi: 10.3934/dcdsb.2021161

[10]

King-Yeung Lam. Dirac-concentrations in an integro-pde model from evolutionary game theory. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 737-754. doi: 10.3934/dcdsb.2018205

[11]

Yuwei Shen, Jinxing Xie, Tingting Li. The risk-averse newsvendor game with competition on demand. Journal of Industrial and Management Optimization, 2016, 12 (3) : 931-947. doi: 10.3934/jimo.2016.12.931

[12]

Bertrand Haut, Georges Bastin. A second order model of road junctions in fluid models of traffic networks. Networks and Heterogeneous Media, 2007, 2 (2) : 227-253. doi: 10.3934/nhm.2007.2.227

[13]

Tao Li, Suresh P. Sethi. A review of dynamic Stackelberg game models. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 125-159. doi: 10.3934/dcdsb.2017007

[14]

Sourabh Bhattacharya, Abhishek Gupta, Tamer Başar. Jamming in mobile networks: A game-theoretic approach. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 1-30. doi: 10.3934/naco.2013.3.1

[15]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics and Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

[16]

Massimiliano Caramia, Giovanni Storchi. Evaluating the effects of parking price and location in multi-modal transportation networks. Networks and Heterogeneous Media, 2006, 1 (3) : 441-465. doi: 10.3934/nhm.2006.1.441

[17]

Bingtuan Li. Some remarks on traveling wave solutions in competition models. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 389-399. doi: 10.3934/dcdsb.2009.12.389

[18]

Lih-Ing W. Roeger. Discrete May-Leonard competition models II. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 841-860. doi: 10.3934/dcdsb.2005.5.841

[19]

Joshua E.S. Socolar. Discrete models of force chain networks. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 601-618. doi: 10.3934/dcdsb.2003.3.601

[20]

Zhen Jin, Guiquan Sun, Huaiping Zhu. Epidemic models for complex networks with demographics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1295-1317. doi: 10.3934/mbe.2014.11.1295

 Impact Factor: 

Metrics

  • PDF downloads (141)
  • HTML views (0)
  • Cited by (4)

[Back to Top]