\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Finite composite games: Equilibria and dynamics

Abstract Related Papers Cited by
  • We study games with finitely many participants, each having finitely many choices. We consider the following categories of participants:
    (I) populations: sets of nonatomic agents,
    (II) atomic splittable players,
    (III) atomic non splittable players.
    We recall and compare the basic properties, expressed through variational inequalities, concerning equilibria, potential games and dissipative games, as well as evolutionary dynamics.
        Then we consider composite games where the three categories of participants are present, a typical example being congestion games, and extend the previous properties of equilibria and dynamics.
        Finally we describe an instance of composite potential game.
    Mathematics Subject Classification: Primary: 91A10, 91A22; Secondary: 91A06, 91A13.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Boulogne, E. Altman, O. Pourtallier and H. Kameda, Mixed equilibrium for multiclass routing game, IEEE Trans. Automat. Control, 47 (2002), 903-916.doi: 10.1109/TAC.2002.1008357.

    [2]

    G. W. Brown and J. von Neumann, Solutions of games by differential equations, in Contibutions to the Theory of Games, I (ed. H.W. Kuhn and A.W. Tucker), Ann. Math. Studies, 24 (1950), 73-79.

    [3]

    R. Cominetti, J. Correa and N. Stier-Moses, The impact of oligopolistic competition in networks, Oper. Res., 57 (2009), 1421-1437.doi: 10.1287/opre.1080.0653.

    [4]

    S. C. Dafermos, Traffic equilibrium and variational inequalities, Transportation Sci., 14 (1980), 42-54.doi: 10.1287/trsc.14.1.42.

    [5]

    P. Dupuis and A. Nagurney, Dynamical systems and variational inequalities, Ann. Oper. Res., 44 (1993), 9-42.doi: 10.1007/BF02073589.

    [6]

    T. L. Friesz, D. Bernstein, N. J. Mehta, R. L. Tobin and S. Ganjalizadeh, Day-to-day dynamic network disequilibria and idealized traveler information systems, Oper. Res., 42 (1994), 1120-1136.doi: 10.1287/opre.42.6.1120.

    [7]

    I. Gilboa and A. Matsui, Social stability and equilibrium, Econometrica, 59 (1991), 859-867.doi: 10.2307/2938230.

    [8]

    P. T. Harker, Multiple equilibrium behaviors on networks, Transportation Sci., 22 (1988), 39-46.doi: 10.1287/trsc.22.1.39.

    [9]

    S. Hart and A. Mas-Colell, Uncoupled dynamics do not lead to Nash equilibrium, Am. Econ. Rev., 93 (2003), 1830-1836.

    [10]

    A. Haurie and P. Marcotte, On the relationship between Nash-Cournot and Wardrop equilibria, Networks, 15 (1985), 295-308.doi: 10.1002/net.3230150303.

    [11]

    J. Hofbauer, From Nash and Brown to Maynard Smith: Equilibria, dynamics and ESS, Selection, 1 (2000), 81-88.doi: 10.1556/Select.1.2000.1-3.8.

    [12]

    J. Hofbauer and W. H. Sandholm, Stable games and their dynamics, J. Econom. Theory, 144 (2009), 1665-1693.doi: 10.1016/j.jet.2009.01.007.

    [13]

    J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambrige, 1998.doi: 10.1017/CBO9781139173179.

    [14]

    D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.

    [15]

    R. Lahkar and W. H. Sandholm, The projection dynamic and the geometry of population games, Games Econom. Behav., 64 (2008), 565-590.doi: 10.1016/j.geb.2008.02.002.

    [16]

    D. Monderer and L. S. Shapley, Potential games, Games Econom. Behav., 14 (1996), 124-143.doi: 10.1006/game.1996.0044.

    [17]

    J. J. Moreau, Proximité et dualité dans un espace hilbertien, (French) [Proximity and duality in a Hilbert space] Bull. Soc. Math. France, 93 (1965), 273-299.

    [18]

    A. Nagurney and D. Zhang, Projected dynamical systems in the formulation, stability analysis, and computation of fixed demand traffic network equilibria, Transportation Sci., 31 (1997), 147-158.doi: 10.1287/trsc.31.2.147.

    [19]

    M. Pappalardo and M. Passacantando, Stability for equilibrium problems: From variational inequalities to dynamical systems, J. Optim. Theory Appl., 113 (2002), 567-582.doi: 10.1023/A:1015312921888.

    [20]

    M. Pappalardo and M. Passacantando, Gap functions and Lyapunov functions, J. Global Optim., 28 (2004), 379-385.doi: 10.1023/B:JOGO.0000026455.72523.ed.

    [21]

    W. H. Sandholm, Potential games with continuous player sets, J. Econom. Theory, 97 (2001), 81-108.doi: 10.1006/jeth.2000.2696.

    [22]

    W. H. Sandholm, Excess payoff dynamics and other well-behaved evolutionary dynamics, J. Econom. Theory, 124 (2005), 149-170.doi: 10.1016/j.jet.2005.02.003.

    [23]

    W. H. Sandholm, Pairwise comparison dynamics and evolutionary foundations for Nash equilibrium, Games, 1 (2010), 3-17.doi: 10.3390/g1010003.

    [24]

    W. H. Sandholm, Population Games and Evolutionary Dynamics, MIT Press, Cambridge, MA, 2011.

    [25]

    R. Selten, Preispolitik der Mehrproduktenunternehmung in der Statischen Theorie, Springer-Verlag, 1970.doi: 10.1007/978-3-642-48888-7.

    [26]

    M. J. Smith, The existence, uniqueness and stability of traffic equilibria, Transportation Res. Part B, 13 (1979), 295-304.doi: 10.1016/0191-2615(79)90022-5.

    [27]

    M. J. Smith, An algorithm for solving asymmetric equilibrium problems with a continuous cost-flow function, Transportation Res. Part B, 17 (1983), 365-371.doi: 10.1016/0191-2615(83)90003-6.

    [28]

    M. J. Smith, The stability of a dynamic model of traffic assignment - an application of a method of Lyapunov, Transportation Sci., 18 (1984), 245-252.doi: 10.1287/trsc.18.3.245.

    [29]

    M. J. Smith, A descent algorithm for solving monotone variational inequalities and monotone complementarity problems, J. Optim. Theory Appl., 44 (1984), 485-496.doi: 10.1007/BF00935463.

    [30]

    J. M. Swinkels, Adjustment dynamics and rational play in games, Games Econom. Behav., 5 (1993), 455-484.doi: 10.1006/game.1993.1025.

    [31]

    P. D. Taylor and L. B. Jonker, Evolutionary stable strategies and game dynamics, Math. Biosci., 40 (1978), 145-156.doi: 10.1016/0025-5564(78)90077-9.

    [32]

    E. Tsakas and M. Voorneveld, The target projection dynamic, Games Econom. Behav., 67 (2009), 708-719.doi: 10.1016/j.geb.2009.01.003.

    [33]

    C. Wan, Coalitions in network congestion games, Math. Oper. Res., 37 (2012), 654-669.doi: 10.1287/moor.1120.0552.

    [34]

    C. Wan, Jeux de congestion dans les réseaux Partie I. Modèles et équilibres, (French) [Network congstion games Part I. Models and equilibria] Tech. Sci. Inform., 32 (2013), 951-980.

    [35]

    G. Wardrop, Some theoretical aspects of road traffic research communication networks, Proc. Inst. Civ. Eng., Part 2, 1 (1952), 325-378.

    [36]

    H. Yang and X. Zhang, Existence of anonymous link tolls for system optimum on networks with mixed equilibrium behaviors, Transportation Res. Part B, 42 (2008), 99-112.doi: 10.1016/j.trb.2007.07.001.

    [37]

    D. Zhang and A. Nagurney, Formulation, stability, and computation of traffic network equilibria as projected dynamical systems, J. Optim. Theory Appl., 93 (1997), 417-444.doi: 10.1023/A:1022610325133.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(139) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return