Citation: |
[1] |
T. Boulogne, E. Altman, O. Pourtallier and H. Kameda, Mixed equilibrium for multiclass routing game, IEEE Trans. Automat. Control, 47 (2002), 903-916.doi: 10.1109/TAC.2002.1008357. |
[2] |
G. W. Brown and J. von Neumann, Solutions of games by differential equations, in Contibutions to the Theory of Games, I (ed. H.W. Kuhn and A.W. Tucker), Ann. Math. Studies, 24 (1950), 73-79. |
[3] |
R. Cominetti, J. Correa and N. Stier-Moses, The impact of oligopolistic competition in networks, Oper. Res., 57 (2009), 1421-1437.doi: 10.1287/opre.1080.0653. |
[4] |
S. C. Dafermos, Traffic equilibrium and variational inequalities, Transportation Sci., 14 (1980), 42-54.doi: 10.1287/trsc.14.1.42. |
[5] |
P. Dupuis and A. Nagurney, Dynamical systems and variational inequalities, Ann. Oper. Res., 44 (1993), 9-42.doi: 10.1007/BF02073589. |
[6] |
T. L. Friesz, D. Bernstein, N. J. Mehta, R. L. Tobin and S. Ganjalizadeh, Day-to-day dynamic network disequilibria and idealized traveler information systems, Oper. Res., 42 (1994), 1120-1136.doi: 10.1287/opre.42.6.1120. |
[7] |
I. Gilboa and A. Matsui, Social stability and equilibrium, Econometrica, 59 (1991), 859-867.doi: 10.2307/2938230. |
[8] |
P. T. Harker, Multiple equilibrium behaviors on networks, Transportation Sci., 22 (1988), 39-46.doi: 10.1287/trsc.22.1.39. |
[9] |
S. Hart and A. Mas-Colell, Uncoupled dynamics do not lead to Nash equilibrium, Am. Econ. Rev., 93 (2003), 1830-1836. |
[10] |
A. Haurie and P. Marcotte, On the relationship between Nash-Cournot and Wardrop equilibria, Networks, 15 (1985), 295-308.doi: 10.1002/net.3230150303. |
[11] |
J. Hofbauer, From Nash and Brown to Maynard Smith: Equilibria, dynamics and ESS, Selection, 1 (2000), 81-88.doi: 10.1556/Select.1.2000.1-3.8. |
[12] |
J. Hofbauer and W. H. Sandholm, Stable games and their dynamics, J. Econom. Theory, 144 (2009), 1665-1693.doi: 10.1016/j.jet.2009.01.007. |
[13] |
J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambrige, 1998.doi: 10.1017/CBO9781139173179. |
[14] |
D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980. |
[15] |
R. Lahkar and W. H. Sandholm, The projection dynamic and the geometry of population games, Games Econom. Behav., 64 (2008), 565-590.doi: 10.1016/j.geb.2008.02.002. |
[16] |
D. Monderer and L. S. Shapley, Potential games, Games Econom. Behav., 14 (1996), 124-143.doi: 10.1006/game.1996.0044. |
[17] |
J. J. Moreau, Proximité et dualité dans un espace hilbertien, (French) [Proximity and duality in a Hilbert space] Bull. Soc. Math. France, 93 (1965), 273-299. |
[18] |
A. Nagurney and D. Zhang, Projected dynamical systems in the formulation, stability analysis, and computation of fixed demand traffic network equilibria, Transportation Sci., 31 (1997), 147-158.doi: 10.1287/trsc.31.2.147. |
[19] |
M. Pappalardo and M. Passacantando, Stability for equilibrium problems: From variational inequalities to dynamical systems, J. Optim. Theory Appl., 113 (2002), 567-582.doi: 10.1023/A:1015312921888. |
[20] |
M. Pappalardo and M. Passacantando, Gap functions and Lyapunov functions, J. Global Optim., 28 (2004), 379-385.doi: 10.1023/B:JOGO.0000026455.72523.ed. |
[21] |
W. H. Sandholm, Potential games with continuous player sets, J. Econom. Theory, 97 (2001), 81-108.doi: 10.1006/jeth.2000.2696. |
[22] |
W. H. Sandholm, Excess payoff dynamics and other well-behaved evolutionary dynamics, J. Econom. Theory, 124 (2005), 149-170.doi: 10.1016/j.jet.2005.02.003. |
[23] |
W. H. Sandholm, Pairwise comparison dynamics and evolutionary foundations for Nash equilibrium, Games, 1 (2010), 3-17.doi: 10.3390/g1010003. |
[24] |
W. H. Sandholm, Population Games and Evolutionary Dynamics, MIT Press, Cambridge, MA, 2011. |
[25] |
R. Selten, Preispolitik der Mehrproduktenunternehmung in der Statischen Theorie, Springer-Verlag, 1970.doi: 10.1007/978-3-642-48888-7. |
[26] |
M. J. Smith, The existence, uniqueness and stability of traffic equilibria, Transportation Res. Part B, 13 (1979), 295-304.doi: 10.1016/0191-2615(79)90022-5. |
[27] |
M. J. Smith, An algorithm for solving asymmetric equilibrium problems with a continuous cost-flow function, Transportation Res. Part B, 17 (1983), 365-371.doi: 10.1016/0191-2615(83)90003-6. |
[28] |
M. J. Smith, The stability of a dynamic model of traffic assignment - an application of a method of Lyapunov, Transportation Sci., 18 (1984), 245-252.doi: 10.1287/trsc.18.3.245. |
[29] |
M. J. Smith, A descent algorithm for solving monotone variational inequalities and monotone complementarity problems, J. Optim. Theory Appl., 44 (1984), 485-496.doi: 10.1007/BF00935463. |
[30] |
J. M. Swinkels, Adjustment dynamics and rational play in games, Games Econom. Behav., 5 (1993), 455-484.doi: 10.1006/game.1993.1025. |
[31] |
P. D. Taylor and L. B. Jonker, Evolutionary stable strategies and game dynamics, Math. Biosci., 40 (1978), 145-156.doi: 10.1016/0025-5564(78)90077-9. |
[32] |
E. Tsakas and M. Voorneveld, The target projection dynamic, Games Econom. Behav., 67 (2009), 708-719.doi: 10.1016/j.geb.2009.01.003. |
[33] |
C. Wan, Coalitions in network congestion games, Math. Oper. Res., 37 (2012), 654-669.doi: 10.1287/moor.1120.0552. |
[34] |
C. Wan, Jeux de congestion dans les réseaux Partie I. Modèles et équilibres, (French) [Network congstion games Part I. Models and equilibria] Tech. Sci. Inform., 32 (2013), 951-980. |
[35] |
G. Wardrop, Some theoretical aspects of road traffic research communication networks, Proc. Inst. Civ. Eng., Part 2, 1 (1952), 325-378. |
[36] |
H. Yang and X. Zhang, Existence of anonymous link tolls for system optimum on networks with mixed equilibrium behaviors, Transportation Res. Part B, 42 (2008), 99-112.doi: 10.1016/j.trb.2007.07.001. |
[37] |
D. Zhang and A. Nagurney, Formulation, stability, and computation of traffic network equilibria as projected dynamical systems, J. Optim. Theory Appl., 93 (1997), 417-444.doi: 10.1023/A:1022610325133. |