July  2016, 3(3): 217-223. doi: 10.3934/jdg.2016011

An asymptotic expression for the fixation probability of a mutant in star graphs

1. 

Departamento de Matemática and Centro de Matemática e Aplicações, Universidade Nova de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal

Received  July 2015 Revised  February 2016 Published  July 2016

We consider the Moran process in a graph called the ``star'' and obtain the asymptotic expression for the fixation probability of a single mutant when the size of the graph is large. The expression obtained corrects the previously known expression announced in reference [E Lieberman, C Hauert, and MA Nowak. Evolutionary dynamics on graphs. Nature, 433(7023):312–316, 2005] and further studied in [M. Broom and J. Rychtar. An analysis of the fixation probability of a mutant on special classes of non-directed graphs. Proc. R. Soc. A-Math. Phys. Eng. Sci., 464(2098):2609–2627, 2008]. We also show that the star graph is an accelerator of evolution, if the graph is large enough.
Citation: Fabio A. C. C. Chalub. An asymptotic expression for the fixation probability of a mutant in star graphs. Journal of Dynamics and Games, 2016, 3 (3) : 217-223. doi: 10.3934/jdg.2016011
References:
[1]

B. Allen and M. Nowak, Games on graphs, EMS Surv. Math. Sci., 1 (2014), 113-151. doi: 10.4171/EMSS/3.

[2]

M. Broom, C. Hadjichrysanthou and J. Rychtar, Evolutionary games on graphs and the speed of the evolutionary process, Proc. R. Soc. A-Math. Phys. Eng. Sci., 466 (2010), 1327-1346. doi: 10.1098/rspa.2009.0487.

[3]

M. Broom and J. Rychtář, Game-theoretical Models in Biology, CRC Press, Boca Raton, FL, 2013.

[4]

M. Broom and J. Rychtar, An analysis of the fixation probability of a mutant on special classes of non-directed graphs, Proc. R. Soc. A-Math. Phys. Eng. Sci., 464 (2008), 2609-2627. doi: 10.1098/rspa.2008.0058.

[5]

J. Diaz, L. A. Goldberg, G. B. Mertzios, D. Richerby, M. Serna and P. G. Spirakis, On the fixation probability of superstars, Proc. R. Soc. A-Math. Phys. Eng. Sci., 469 (2013), 20130193, 11 pp. doi: 10.1098/rspa.2013.0193.

[6]

R. A. Fisher, The Genetical Theory of Natural Selection, Clarendon Press, Oxford, 1999.

[7]

M. Frean, P. B. Rainey and A. Traulsen, The effect of population structure on the rate of evolution, Proc. R. Soc. B-Biol. Sci., 280 (2013), 1762. doi: 10.1098/rspb.2013.0211.

[8]

B. Houchmandzadeh and M. Vallade, Exact results for fixation probability of bithermal evolutionary graphs, Biosystems, 112 (2013), 49-54.

[9]

E. Lieberman, C. Hauert and M. A. Nowak, Evolutionary dynamics on graphs, Nature, 433 (2005), 312-316. doi: 10.1038/nature03204.

[10]

P. A. P. Moran, The Statistical Processes of Evolutionary Theory, Clarendon, Oxford, 1962.

[11]

M. A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life, The Belknap Press of Harvard University Press, Cambridge, MA, 2006.

[12]

P. Shakarian, P. Roos and A. Johnson, A review of evolutionary graph theory with applications to game theory, Biosystems, 107 (2012), 66-80. doi: 10.1016/j.biosystems.2011.09.006.

[13]

A. Traulsen, M. A. Nowak and J. M. Pacheco, Stochastic dynamics of invasion and fixation, Phys. Rev. E, 74 (2006), 011909. doi: 10.1103/PhysRevE.74.011909.

[14]

C. Zhang, Y. Wu, W. Liu and X. Yang, Fixation probabilities on complete star and bipartite digraphs, Discrete Dyn. Nat. Soc., (2012), Art. ID 940465, 21 pp.

[15]

S. Wright, Evolution in mendelian populations, Genetics, 16 (1931), 97-159.

show all references

References:
[1]

B. Allen and M. Nowak, Games on graphs, EMS Surv. Math. Sci., 1 (2014), 113-151. doi: 10.4171/EMSS/3.

[2]

M. Broom, C. Hadjichrysanthou and J. Rychtar, Evolutionary games on graphs and the speed of the evolutionary process, Proc. R. Soc. A-Math. Phys. Eng. Sci., 466 (2010), 1327-1346. doi: 10.1098/rspa.2009.0487.

[3]

M. Broom and J. Rychtář, Game-theoretical Models in Biology, CRC Press, Boca Raton, FL, 2013.

[4]

M. Broom and J. Rychtar, An analysis of the fixation probability of a mutant on special classes of non-directed graphs, Proc. R. Soc. A-Math. Phys. Eng. Sci., 464 (2008), 2609-2627. doi: 10.1098/rspa.2008.0058.

[5]

J. Diaz, L. A. Goldberg, G. B. Mertzios, D. Richerby, M. Serna and P. G. Spirakis, On the fixation probability of superstars, Proc. R. Soc. A-Math. Phys. Eng. Sci., 469 (2013), 20130193, 11 pp. doi: 10.1098/rspa.2013.0193.

[6]

R. A. Fisher, The Genetical Theory of Natural Selection, Clarendon Press, Oxford, 1999.

[7]

M. Frean, P. B. Rainey and A. Traulsen, The effect of population structure on the rate of evolution, Proc. R. Soc. B-Biol. Sci., 280 (2013), 1762. doi: 10.1098/rspb.2013.0211.

[8]

B. Houchmandzadeh and M. Vallade, Exact results for fixation probability of bithermal evolutionary graphs, Biosystems, 112 (2013), 49-54.

[9]

E. Lieberman, C. Hauert and M. A. Nowak, Evolutionary dynamics on graphs, Nature, 433 (2005), 312-316. doi: 10.1038/nature03204.

[10]

P. A. P. Moran, The Statistical Processes of Evolutionary Theory, Clarendon, Oxford, 1962.

[11]

M. A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life, The Belknap Press of Harvard University Press, Cambridge, MA, 2006.

[12]

P. Shakarian, P. Roos and A. Johnson, A review of evolutionary graph theory with applications to game theory, Biosystems, 107 (2012), 66-80. doi: 10.1016/j.biosystems.2011.09.006.

[13]

A. Traulsen, M. A. Nowak and J. M. Pacheco, Stochastic dynamics of invasion and fixation, Phys. Rev. E, 74 (2006), 011909. doi: 10.1103/PhysRevE.74.011909.

[14]

C. Zhang, Y. Wu, W. Liu and X. Yang, Fixation probabilities on complete star and bipartite digraphs, Discrete Dyn. Nat. Soc., (2012), Art. ID 940465, 21 pp.

[15]

S. Wright, Evolution in mendelian populations, Genetics, 16 (1931), 97-159.

[1]

Shuichi Jimbo, Yoshihisa Morita. Asymptotic behavior of entire solutions to reaction-diffusion equations in an infinite star graph. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4013-4039. doi: 10.3934/dcds.2021026

[2]

Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279

[3]

Jaime Angulo Pava, Nataliia Goloshchapova. On the orbital instability of excited states for the NLS equation with the δ-interaction on a star graph. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5039-5066. doi: 10.3934/dcds.2018221

[4]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control and Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[5]

Amin Boumenir, Vu Kim Tuan. Reconstruction of the coefficients of a star graph from observations of its vertices. Inverse Problems and Imaging, 2018, 12 (6) : 1293-1308. doi: 10.3934/ipi.2018054

[6]

Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks and Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295

[7]

M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer. On algebraic graph theory and the dynamics of innovation networks. Networks and Heterogeneous Media, 2008, 3 (2) : 201-219. doi: 10.3934/nhm.2008.3.201

[8]

Barton E. Lee. Consensus and voting on large graphs: An application of graph limit theory. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1719-1744. doi: 10.3934/dcds.2018071

[9]

Lu Yang, Guangsheng Wei, Vyacheslav Pivovarchik. Direct and inverse spectral problems for a star graph of Stieltjes strings damped at a pendant vertex. Inverse Problems and Imaging, 2021, 15 (2) : 257-270. doi: 10.3934/ipi.2020063

[10]

Giuseppe Maria Coclite, Carlotta Donadello. Vanishing viscosity on a star-shaped graph under general transmission conditions at the node. Networks and Heterogeneous Media, 2020, 15 (2) : 197-213. doi: 10.3934/nhm.2020009

[11]

Günter Leugering, Gisèle Mophou, Maryse Moutamal, Mahamadi Warma. Optimal control problems of parabolic fractional Sturm-Liouville equations in a star graph. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022015

[12]

Jan Rychtář, Dewey T. Taylor. Moran process and Wright-Fisher process favor low variability. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3491-3504. doi: 10.3934/dcdsb.2020242

[13]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[14]

Oded Schramm. Hyperfinite graph limits. Electronic Research Announcements, 2008, 15: 17-23. doi: 10.3934/era.2008.15.17

[15]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

[16]

John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16.

[17]

Roberto De Leo, James A. Yorke. The graph of the logistic map is a tower. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5243-5269. doi: 10.3934/dcds.2021075

[18]

A. C. Eberhard, J-P. Crouzeix. Existence of closed graph, maximal, cyclic pseudo-monotone relations and revealed preference theory. Journal of Industrial and Management Optimization, 2007, 3 (2) : 233-255. doi: 10.3934/jimo.2007.3.233

[19]

Zixiao Liu, Jiguang Bao. Asymptotic expansion of 2-dimensional gradient graph with vanishing mean curvature at infinity. Communications on Pure and Applied Analysis, 2022, 21 (9) : 2911-2931. doi: 10.3934/cpaa.2022081

[20]

Roy H. Goodman. NLS bifurcations on the bowtie combinatorial graph and the dumbbell metric graph. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2203-2232. doi: 10.3934/dcds.2019093

 Impact Factor: 

Metrics

  • PDF downloads (144)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]