-
Previous Article
On the evolution of compliance and regulation with tax evading agents
- JDG Home
- This Issue
-
Next Article
An asymptotic expression for the fixation probability of a mutant in star graphs
A Malthus-Swan-Solow model of economic growth
1. | Departmento de Economía, Universidad Carlos III de Madrid, Calle Madrid, 126, 28903 Getafe (Madrid), Spain |
References:
[1] |
E. Accinelli and G. Brida, The ramsey model with logistic population growth, Economics Bulletin, 3 (2007), 1-8. |
[2] |
E. Accinelli and G. Brida, Population growth and the Solow-Swan model, International Journal of Ecological Economics and Statistics, 8 (2007), 54-63. |
[3] |
A. Alonso, C. Echevarria and K. C. Tran, Long-run economic performance and the labor market, Southern Economic Journal, 79 (2004), 905-919. |
[4] |
L. Fanti and P. Manfredi, The Solow's model with endogenous population, Journal of Economic Development, 28 (2003), 103-115. |
[5] |
O. Galor, From stagnation to growth: Unified growth theory, Handbook of Economic Growth, (2005), 171-293. |
[6] |
L. Guerrini, The Solow-Swan model with a bounded population growth rate, Journal of Mathematical Economics, 42 (2006), 14-21.
doi: 10.1016/j.jmateco.2005.05.001. |
[7] |
G. D. Hansen and E. C. Prescott, Malthus to solow, American Economic Review, 92 (2002), 1205-1217. |
[8] |
A. Irmen, Malthus and Solow - a note on closed-form solutions, Economics Bulletin, 10 (2004), 1-6. |
[9] |
T. R. Malthus, An Essay on the Principle of Population, J. Johnson, London, 1798. |
[10] |
R. M. Solow, A contribution to the theory of economic growth, Quarterly Journal of Economics, 70 (1956), 65-94. |
[11] |
T. W. Swan, Economic Growth and Capital Accumulation, Economic Record, 32 (1956), 334-361. |
[12] |
N. Voigtländer and H.-J. Voth, The three horsemen of riches: Plague, war, and urbanization in early modern europe, SSRN 1029347. Revised 2011. |
[13] |
J. G. Williamson, Growth, distribution, and demography: Some lessons from history, Explorations in Economic History, 35 (1998), 241-271. |
show all references
References:
[1] |
E. Accinelli and G. Brida, The ramsey model with logistic population growth, Economics Bulletin, 3 (2007), 1-8. |
[2] |
E. Accinelli and G. Brida, Population growth and the Solow-Swan model, International Journal of Ecological Economics and Statistics, 8 (2007), 54-63. |
[3] |
A. Alonso, C. Echevarria and K. C. Tran, Long-run economic performance and the labor market, Southern Economic Journal, 79 (2004), 905-919. |
[4] |
L. Fanti and P. Manfredi, The Solow's model with endogenous population, Journal of Economic Development, 28 (2003), 103-115. |
[5] |
O. Galor, From stagnation to growth: Unified growth theory, Handbook of Economic Growth, (2005), 171-293. |
[6] |
L. Guerrini, The Solow-Swan model with a bounded population growth rate, Journal of Mathematical Economics, 42 (2006), 14-21.
doi: 10.1016/j.jmateco.2005.05.001. |
[7] |
G. D. Hansen and E. C. Prescott, Malthus to solow, American Economic Review, 92 (2002), 1205-1217. |
[8] |
A. Irmen, Malthus and Solow - a note on closed-form solutions, Economics Bulletin, 10 (2004), 1-6. |
[9] |
T. R. Malthus, An Essay on the Principle of Population, J. Johnson, London, 1798. |
[10] |
R. M. Solow, A contribution to the theory of economic growth, Quarterly Journal of Economics, 70 (1956), 65-94. |
[11] |
T. W. Swan, Economic Growth and Capital Accumulation, Economic Record, 32 (1956), 334-361. |
[12] |
N. Voigtländer and H.-J. Voth, The three horsemen of riches: Plague, war, and urbanization in early modern europe, SSRN 1029347. Revised 2011. |
[13] |
J. G. Williamson, Growth, distribution, and demography: Some lessons from history, Explorations in Economic History, 35 (1998), 241-271. |
[1] |
Luis C. Corchón. Corrigendum to "A Malthus-Swan-Solow model of economic growth". Journal of Dynamics and Games, 2018, 5 (2) : 187-187. doi: 10.3934/jdg.2018011 |
[2] |
Gaston Cayssials, Santiago Picasso. The Solow-Swan model with endogenous population growth. Journal of Dynamics and Games, 2020, 7 (3) : 197-208. doi: 10.3934/jdg.2020014 |
[3] |
AdélaÏde Olivier. How does variability in cell aging and growth rates influence the Malthus parameter?. Kinetic and Related Models, 2017, 10 (2) : 481-512. doi: 10.3934/krm.2017019 |
[4] |
Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563 |
[5] |
Shinji Nakaoka, Hisashi Inaba. Demographic modeling of transient amplifying cell population growth. Mathematical Biosciences & Engineering, 2014, 11 (2) : 363-384. doi: 10.3934/mbe.2014.11.363 |
[6] |
Fabio Augusto Milner. How Do Nonreproductive Groups Affect Population Growth?. Mathematical Biosciences & Engineering, 2005, 2 (3) : 579-590. doi: 10.3934/mbe.2005.2.579 |
[7] |
Edoardo Beretta, Dimitri Breda. Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences & Engineering, 2016, 13 (1) : 19-41. doi: 10.3934/mbe.2016.13.19 |
[8] |
Pao-Liu Chow. Stochastic PDE model for spatial population growth in random environments. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 55-65. doi: 10.3934/dcdsb.2016.21.55 |
[9] |
Dong Liang, Jianhong Wu, Fan Zhang. Modelling Population Growth with Delayed Nonlocal Reaction in 2-Dimensions. Mathematical Biosciences & Engineering, 2005, 2 (1) : 111-132. doi: 10.3934/mbe.2005.2.111 |
[10] |
Shangbing Ai, Zhian Wang. Traveling bands for the Keller-Segel model with population growth. Mathematical Biosciences & Engineering, 2015, 12 (4) : 717-737. doi: 10.3934/mbe.2015.12.717 |
[11] |
Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3419-3440. doi: 10.3934/dcdss.2020426 |
[12] |
Michael Winkler. Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2777-2793. doi: 10.3934/dcdsb.2017135 |
[13] |
Atul Narang, Sergei S. Pilyugin. Toward an Integrated Physiological Theory of Microbial Growth: From Subcellular Variables to Population Dynamics. Mathematical Biosciences & Engineering, 2005, 2 (1) : 169-206. doi: 10.3934/mbe.2005.2.169 |
[14] |
Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1-17. doi: 10.3934/mbe.2013.10.1 |
[15] |
Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1763-1781. doi: 10.3934/dcdsb.2021005 |
[16] |
Krzysztof Frączek, Leonid Polterovich. Growth and mixing. Journal of Modern Dynamics, 2008, 2 (2) : 315-338. doi: 10.3934/jmd.2008.2.315 |
[17] |
Erika T. Camacho, Christopher M. Kribs-Zaleta, Stephen Wirkus. Metering effects in population systems. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1365-1379. doi: 10.3934/mbe.2013.10.1365 |
[18] |
Dario Bauso, Thomas W. L. Norman. Approachability in population games. Journal of Dynamics and Games, 2020, 7 (4) : 269-289. doi: 10.3934/jdg.2020019 |
[19] |
Wendi Wang. Population dispersal and disease spread. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 797-804. doi: 10.3934/dcdsb.2004.4.797 |
[20] |
Andrea Caravaggio, Luca Gori, Mauro Sodini. Population dynamics and economic development. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5827-5848. doi: 10.3934/dcdsb.2021178 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]