July  2016, 3(3): 225-230. doi: 10.3934/jdg.2016012

A Malthus-Swan-Solow model of economic growth

1. 

Departmento de Economía, Universidad Carlos III de Madrid, Calle Madrid, 126, 28903 Getafe (Madrid), Spain

Received  November 2015 Revised  February 2016 Published  July 2016

In this paper we introduce in the Solow-Swan growth model a labor supply based on Malthusian ideas. We show that this model may yield several steady states and that an increase in total factor productivity might decrease the capital-labor ratio in a stable equilibrium.
Citation: Luis C. Corchón. A Malthus-Swan-Solow model of economic growth. Journal of Dynamics and Games, 2016, 3 (3) : 225-230. doi: 10.3934/jdg.2016012
References:
[1]

E. Accinelli and G. Brida, The ramsey model with logistic population growth, Economics Bulletin, 3 (2007), 1-8.

[2]

E. Accinelli and G. Brida, Population growth and the Solow-Swan model, International Journal of Ecological Economics and Statistics, 8 (2007), 54-63.

[3]

A. Alonso, C. Echevarria and K. C. Tran, Long-run economic performance and the labor market, Southern Economic Journal, 79 (2004), 905-919.

[4]

L. Fanti and P. Manfredi, The Solow's model with endogenous population, Journal of Economic Development, 28 (2003), 103-115.

[5]

O. Galor, From stagnation to growth: Unified growth theory, Handbook of Economic Growth, (2005), 171-293.

[6]

L. Guerrini, The Solow-Swan model with a bounded population growth rate, Journal of Mathematical Economics, 42 (2006), 14-21. doi: 10.1016/j.jmateco.2005.05.001.

[7]

G. D. Hansen and E. C. Prescott, Malthus to solow, American Economic Review, 92 (2002), 1205-1217.

[8]

A. Irmen, Malthus and Solow - a note on closed-form solutions, Economics Bulletin, 10 (2004), 1-6.

[9]

T. R. Malthus, An Essay on the Principle of Population, J. Johnson, London, 1798.

[10]

R. M. Solow, A contribution to the theory of economic growth, Quarterly Journal of Economics, 70 (1956), 65-94.

[11]

T. W. Swan, Economic Growth and Capital Accumulation, Economic Record, 32 (1956), 334-361.

[12]

N. Voigtländer and H.-J. Voth, The three horsemen of riches: Plague, war, and urbanization in early modern europe, SSRN 1029347. Revised 2011.

[13]

J. G. Williamson, Growth, distribution, and demography: Some lessons from history, Explorations in Economic History, 35 (1998), 241-271.

show all references

References:
[1]

E. Accinelli and G. Brida, The ramsey model with logistic population growth, Economics Bulletin, 3 (2007), 1-8.

[2]

E. Accinelli and G. Brida, Population growth and the Solow-Swan model, International Journal of Ecological Economics and Statistics, 8 (2007), 54-63.

[3]

A. Alonso, C. Echevarria and K. C. Tran, Long-run economic performance and the labor market, Southern Economic Journal, 79 (2004), 905-919.

[4]

L. Fanti and P. Manfredi, The Solow's model with endogenous population, Journal of Economic Development, 28 (2003), 103-115.

[5]

O. Galor, From stagnation to growth: Unified growth theory, Handbook of Economic Growth, (2005), 171-293.

[6]

L. Guerrini, The Solow-Swan model with a bounded population growth rate, Journal of Mathematical Economics, 42 (2006), 14-21. doi: 10.1016/j.jmateco.2005.05.001.

[7]

G. D. Hansen and E. C. Prescott, Malthus to solow, American Economic Review, 92 (2002), 1205-1217.

[8]

A. Irmen, Malthus and Solow - a note on closed-form solutions, Economics Bulletin, 10 (2004), 1-6.

[9]

T. R. Malthus, An Essay on the Principle of Population, J. Johnson, London, 1798.

[10]

R. M. Solow, A contribution to the theory of economic growth, Quarterly Journal of Economics, 70 (1956), 65-94.

[11]

T. W. Swan, Economic Growth and Capital Accumulation, Economic Record, 32 (1956), 334-361.

[12]

N. Voigtländer and H.-J. Voth, The three horsemen of riches: Plague, war, and urbanization in early modern europe, SSRN 1029347. Revised 2011.

[13]

J. G. Williamson, Growth, distribution, and demography: Some lessons from history, Explorations in Economic History, 35 (1998), 241-271.

[1]

Luis C. Corchón. Corrigendum to "A Malthus-Swan-Solow model of economic growth". Journal of Dynamics and Games, 2018, 5 (2) : 187-187. doi: 10.3934/jdg.2018011

[2]

Gaston Cayssials, Santiago Picasso. The Solow-Swan model with endogenous population growth. Journal of Dynamics and Games, 2020, 7 (3) : 197-208. doi: 10.3934/jdg.2020014

[3]

AdélaÏde Olivier. How does variability in cell aging and growth rates influence the Malthus parameter?. Kinetic and Related Models, 2017, 10 (2) : 481-512. doi: 10.3934/krm.2017019

[4]

Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563

[5]

Shinji Nakaoka, Hisashi Inaba. Demographic modeling of transient amplifying cell population growth. Mathematical Biosciences & Engineering, 2014, 11 (2) : 363-384. doi: 10.3934/mbe.2014.11.363

[6]

Fabio Augusto Milner. How Do Nonreproductive Groups Affect Population Growth?. Mathematical Biosciences & Engineering, 2005, 2 (3) : 579-590. doi: 10.3934/mbe.2005.2.579

[7]

Edoardo Beretta, Dimitri Breda. Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences & Engineering, 2016, 13 (1) : 19-41. doi: 10.3934/mbe.2016.13.19

[8]

Pao-Liu Chow. Stochastic PDE model for spatial population growth in random environments. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 55-65. doi: 10.3934/dcdsb.2016.21.55

[9]

Dong Liang, Jianhong Wu, Fan Zhang. Modelling Population Growth with Delayed Nonlocal Reaction in 2-Dimensions. Mathematical Biosciences & Engineering, 2005, 2 (1) : 111-132. doi: 10.3934/mbe.2005.2.111

[10]

Shangbing Ai, Zhian Wang. Traveling bands for the Keller-Segel model with population growth. Mathematical Biosciences & Engineering, 2015, 12 (4) : 717-737. doi: 10.3934/mbe.2015.12.717

[11]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3419-3440. doi: 10.3934/dcdss.2020426

[12]

Michael Winkler. Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2777-2793. doi: 10.3934/dcdsb.2017135

[13]

Atul Narang, Sergei S. Pilyugin. Toward an Integrated Physiological Theory of Microbial Growth: From Subcellular Variables to Population Dynamics. Mathematical Biosciences & Engineering, 2005, 2 (1) : 169-206. doi: 10.3934/mbe.2005.2.169

[14]

Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1-17. doi: 10.3934/mbe.2013.10.1

[15]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1763-1781. doi: 10.3934/dcdsb.2021005

[16]

Krzysztof Frączek, Leonid Polterovich. Growth and mixing. Journal of Modern Dynamics, 2008, 2 (2) : 315-338. doi: 10.3934/jmd.2008.2.315

[17]

Erika T. Camacho, Christopher M. Kribs-Zaleta, Stephen Wirkus. Metering effects in population systems. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1365-1379. doi: 10.3934/mbe.2013.10.1365

[18]

Dario Bauso, Thomas W. L. Norman. Approachability in population games. Journal of Dynamics and Games, 2020, 7 (4) : 269-289. doi: 10.3934/jdg.2020019

[19]

Wendi Wang. Population dispersal and disease spread. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 797-804. doi: 10.3934/dcdsb.2004.4.797

[20]

Andrea Caravaggio, Luca Gori, Mauro Sodini. Population dynamics and economic development. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5827-5848. doi: 10.3934/dcdsb.2021178

 Impact Factor: 

Metrics

  • PDF downloads (257)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]