-
Previous Article
Competition with high number of agents and a major one
- JDG Home
- This Issue
- Next Article
Network formation games with teams
1. | INRIA Sophia-Antipolis, 2004 route des Lucioles, 06902 Sophia-Antipolis, France, France, France |
References:
[1] |
E. Anshelevich, F. B. Shepherd and G. Wilfong, Strategic network formation through peering and service agreements, Games and Economic Behavior, 73 (2011), 17-38.
doi: 10.1016/j.geb.2011.01.002. |
[2] |
K. Avrachenkov, J. Filar and M. Haviv, Singular perturbations of Markov chains and decision processes, in Handbook of Markov Decision Processes, 113-150, International Series in Operations Research and Management Science, 40, Kluwer Acad. Publ., Boston, MA, 2002.
doi: 10.1007/978-1-4615-0805-2_4. |
[3] |
K. Avrachenkov, J. Filar and P. Howlett, Analytic Perturbation Theory and Its Applications, SIAM, 2013.
doi: 10.1137/1.9781611973143. |
[4] |
L. Boncinelli and P. Pin, Efficiency and stability in a process of teams formation, 2014. |
[5] |
J. Corbo, S. Jain, M. Mitzenmacher and D. C. Parkes, An economically-principled generative model of AS graph connectivity, in Proceedings of NetEcon+IBC, 2007. |
[6] |
J. Corbo and D. Parkes, The price of selfish behavior in bilateral network formation, in Proceedings of the twenty-fourth annual ACM symposium on Principles of distributed computing, 2005, 99-107.
doi: 10.1145/1073814.1073833. |
[7] |
G. Demange and M. Wooders (eds.), Group Formation in Economics: Networks, Clubs, and Coalitions, Cambridge University Press, 2005.
doi: 10.1017/CBO9780511614385. |
[8] |
B. Dutta and M. O. Jackson (eds.), Networks and Groups: Models of Strategic Formation, Springer Berlin Heidelberg, 2003.
doi: 10.1007/978-3-540-24790-6. |
[9] |
J. Elias, F. Martignon, K. Avrachenkov and G. Neglia, A game theoretic analysis of network design with socialy-aware users, Computer Networks, 55 (2011), 106-118. |
[10] |
A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou and S. Shenker, On a network creation game, in Proceedings of the twenty-second annual symposium on Principles of distributed computing, 2003, 347-351.
doi: 10.1145/872035.872088. |
[11] |
D. Foster and H. P. Young, Stochastic evolutionary game dynamics, Theoretical Population Biology, 38 (1990), 219-232.
doi: 10.1016/0040-5809(90)90011-J. |
[12] |
D. Fudenberg and L. A. Imhof, Imitation processes with small mutations, Journal of Economic Theory, 131 (2006), 251-262.
doi: 10.1016/j.jet.2005.04.006. |
[13] |
D. Fudenberg, M. A. Nowak, C. Taylor and L. A. Imhof, Evolutionary game dynamics in finite populations with strong selection and weak mutations, Theoretical Population Biology, 70 (2006), 352-363.
doi: 10.1016/j.tpb.2006.07.006. |
[14] |
D. Gale and L. S. Shapley, College admissions and the stability of marriage, The American Mathematical Monthly, 69 (1962), 9-15.
doi: 10.2307/2312726. |
[15] |
S. Goyal, Connections: An Introduction to the Economics of Networks, Princeton University Press, 2007. |
[16] |
M. O. Jackson, Social and Economic Networks, Princeton University Press, 2008. |
[17] |
M. O. Jackson and A. van den Nouweland, Strongly stable networks, Games and Economic Behavior, 51 (2005), 420-444.
doi: 10.1016/j.geb.2004.08.004. |
[18] |
M. O. Jackson and A. Watts, The evolution of social and economic networks, Journal of Economic Theory, 106 (2002), 265-295.
doi: 10.1006/jeth.2001.2903. |
[19] |
M. O. Jackson and A. Wolinsky, A strategic model of social and economic networks, Journal of Economic Theory, 71 (1996), 44-74.
doi: 10.1006/jeth.1996.0108. |
[20] |
R. Johari, S. Mannor and J. N. Tsitsiklis, A contract-based model for directed network formation, Games and Economic Behavior, 56 (2006), 201-224.
doi: 10.1016/j.geb.2005.08.010. |
[21] |
M. Kandori, G. J. Mailath and R. Rob, Learning, mutation, and long run equilibria in games, Econometrica, 61 (1993), 29-56.
doi: 10.2307/2951777. |
[22] |
B. Klaus, F. Klijn and M. Walzl, Stochastic stability for roommate markets, Journal of Economic Theory, 145 (2010), 2218-2240.
doi: 10.1016/j.jet.2010.07.006. |
[23] |
J. Newton, Coalitional stochastic stability, Games and Economic Behavior, 75 (2012), 842-854.
doi: 10.1016/j.geb.2012.02.014. |
[24] |
J. Newton, Recontracting and stochastic stability in cooperative games, Journal of Economic Theory, 147 (2012), 364-381.
doi: 10.1016/j.jet.2011.11.007. |
[25] |
J. Newton and S. D. Angus, Coalitions, tipping points and the speed of evolution, Journal of Economic Theory, 157 (2015), 172-187.
doi: 10.1016/j.jet.2015.01.003. |
[26] |
J. Newton and R. Sawa, A one-shot deviation principle for stability in matching problems, Journal of Economic Theory, 157 (2015), 1-27.
doi: 10.1016/j.jet.2014.11.015. |
[27] |
A. Roth and M. Sotomayor, Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis, Cambridge University Press, 1992. |
[28] |
W. Saad, Z. Han, T. Basar, M. Debbah and A. Hjorungnes, Network formation games among relay stations in next generation wireless networks, IEE Transactions on Communications, 59 (2011), 2528-2542.
doi: 10.1109/TCOMM.2011.062311.100046. |
[29] |
W. Saad, A. Hjorungnes, Z. Han and T. Basar, Network formation games for wireless multi-hop networks in the presence of eavesdroppers, in 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2009, 1-4.
doi: 10.1109/CAMSAP.2009.5413303. |
[30] |
R. Sawa, Coalitional stochastic stability in games, networks and markets, Games and Economic Behavior, 88 (2014), 90-111.
doi: 10.1016/j.geb.2014.07.005. |
[31] |
H. P. Young, The evolution of conventions, Econometrica, 61 (1993), 57-84.
doi: 10.2307/2951778. |
show all references
References:
[1] |
E. Anshelevich, F. B. Shepherd and G. Wilfong, Strategic network formation through peering and service agreements, Games and Economic Behavior, 73 (2011), 17-38.
doi: 10.1016/j.geb.2011.01.002. |
[2] |
K. Avrachenkov, J. Filar and M. Haviv, Singular perturbations of Markov chains and decision processes, in Handbook of Markov Decision Processes, 113-150, International Series in Operations Research and Management Science, 40, Kluwer Acad. Publ., Boston, MA, 2002.
doi: 10.1007/978-1-4615-0805-2_4. |
[3] |
K. Avrachenkov, J. Filar and P. Howlett, Analytic Perturbation Theory and Its Applications, SIAM, 2013.
doi: 10.1137/1.9781611973143. |
[4] |
L. Boncinelli and P. Pin, Efficiency and stability in a process of teams formation, 2014. |
[5] |
J. Corbo, S. Jain, M. Mitzenmacher and D. C. Parkes, An economically-principled generative model of AS graph connectivity, in Proceedings of NetEcon+IBC, 2007. |
[6] |
J. Corbo and D. Parkes, The price of selfish behavior in bilateral network formation, in Proceedings of the twenty-fourth annual ACM symposium on Principles of distributed computing, 2005, 99-107.
doi: 10.1145/1073814.1073833. |
[7] |
G. Demange and M. Wooders (eds.), Group Formation in Economics: Networks, Clubs, and Coalitions, Cambridge University Press, 2005.
doi: 10.1017/CBO9780511614385. |
[8] |
B. Dutta and M. O. Jackson (eds.), Networks and Groups: Models of Strategic Formation, Springer Berlin Heidelberg, 2003.
doi: 10.1007/978-3-540-24790-6. |
[9] |
J. Elias, F. Martignon, K. Avrachenkov and G. Neglia, A game theoretic analysis of network design with socialy-aware users, Computer Networks, 55 (2011), 106-118. |
[10] |
A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou and S. Shenker, On a network creation game, in Proceedings of the twenty-second annual symposium on Principles of distributed computing, 2003, 347-351.
doi: 10.1145/872035.872088. |
[11] |
D. Foster and H. P. Young, Stochastic evolutionary game dynamics, Theoretical Population Biology, 38 (1990), 219-232.
doi: 10.1016/0040-5809(90)90011-J. |
[12] |
D. Fudenberg and L. A. Imhof, Imitation processes with small mutations, Journal of Economic Theory, 131 (2006), 251-262.
doi: 10.1016/j.jet.2005.04.006. |
[13] |
D. Fudenberg, M. A. Nowak, C. Taylor and L. A. Imhof, Evolutionary game dynamics in finite populations with strong selection and weak mutations, Theoretical Population Biology, 70 (2006), 352-363.
doi: 10.1016/j.tpb.2006.07.006. |
[14] |
D. Gale and L. S. Shapley, College admissions and the stability of marriage, The American Mathematical Monthly, 69 (1962), 9-15.
doi: 10.2307/2312726. |
[15] |
S. Goyal, Connections: An Introduction to the Economics of Networks, Princeton University Press, 2007. |
[16] |
M. O. Jackson, Social and Economic Networks, Princeton University Press, 2008. |
[17] |
M. O. Jackson and A. van den Nouweland, Strongly stable networks, Games and Economic Behavior, 51 (2005), 420-444.
doi: 10.1016/j.geb.2004.08.004. |
[18] |
M. O. Jackson and A. Watts, The evolution of social and economic networks, Journal of Economic Theory, 106 (2002), 265-295.
doi: 10.1006/jeth.2001.2903. |
[19] |
M. O. Jackson and A. Wolinsky, A strategic model of social and economic networks, Journal of Economic Theory, 71 (1996), 44-74.
doi: 10.1006/jeth.1996.0108. |
[20] |
R. Johari, S. Mannor and J. N. Tsitsiklis, A contract-based model for directed network formation, Games and Economic Behavior, 56 (2006), 201-224.
doi: 10.1016/j.geb.2005.08.010. |
[21] |
M. Kandori, G. J. Mailath and R. Rob, Learning, mutation, and long run equilibria in games, Econometrica, 61 (1993), 29-56.
doi: 10.2307/2951777. |
[22] |
B. Klaus, F. Klijn and M. Walzl, Stochastic stability for roommate markets, Journal of Economic Theory, 145 (2010), 2218-2240.
doi: 10.1016/j.jet.2010.07.006. |
[23] |
J. Newton, Coalitional stochastic stability, Games and Economic Behavior, 75 (2012), 842-854.
doi: 10.1016/j.geb.2012.02.014. |
[24] |
J. Newton, Recontracting and stochastic stability in cooperative games, Journal of Economic Theory, 147 (2012), 364-381.
doi: 10.1016/j.jet.2011.11.007. |
[25] |
J. Newton and S. D. Angus, Coalitions, tipping points and the speed of evolution, Journal of Economic Theory, 157 (2015), 172-187.
doi: 10.1016/j.jet.2015.01.003. |
[26] |
J. Newton and R. Sawa, A one-shot deviation principle for stability in matching problems, Journal of Economic Theory, 157 (2015), 1-27.
doi: 10.1016/j.jet.2014.11.015. |
[27] |
A. Roth and M. Sotomayor, Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis, Cambridge University Press, 1992. |
[28] |
W. Saad, Z. Han, T. Basar, M. Debbah and A. Hjorungnes, Network formation games among relay stations in next generation wireless networks, IEE Transactions on Communications, 59 (2011), 2528-2542.
doi: 10.1109/TCOMM.2011.062311.100046. |
[29] |
W. Saad, A. Hjorungnes, Z. Han and T. Basar, Network formation games for wireless multi-hop networks in the presence of eavesdroppers, in 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2009, 1-4.
doi: 10.1109/CAMSAP.2009.5413303. |
[30] |
R. Sawa, Coalitional stochastic stability in games, networks and markets, Games and Economic Behavior, 88 (2014), 90-111.
doi: 10.1016/j.geb.2014.07.005. |
[31] |
H. P. Young, The evolution of conventions, Econometrica, 61 (1993), 57-84.
doi: 10.2307/2951778. |
[1] |
Mathias Staudigl, Srinivas Arigapudi, William H. Sandholm. Large deviations and Stochastic stability in Population Games. Journal of Dynamics and Games, 2021 doi: 10.3934/jdg.2021021 |
[2] |
Aradhana Narang, A. J. Shaiju. Neighborhood strong superiority and evolutionary stability of polymorphic profiles in asymmetric games. Journal of Dynamics and Games, 2022 doi: 10.3934/jdg.2022012 |
[3] |
Ryoji Sawa. Stochastic stability in the large population and small mutation limits for coordination games. Journal of Dynamics and Games, 2021 doi: 10.3934/jdg.2021015 |
[4] |
Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Stability of the dynamics of an asymmetric neural network. Communications on Pure and Applied Analysis, 2009, 8 (2) : 655-671. doi: 10.3934/cpaa.2009.8.655 |
[5] |
Karim El Mufti, Rania Yahia. Polynomial stability in viscoelastic network of strings. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1421-1438. doi: 10.3934/dcdss.2022073 |
[6] |
Yiqiu Mao, Dongming Yan, ChunHsien Lu. Dynamic transitions and stability for the acetabularia whorl formation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5989-6004. doi: 10.3934/dcdsb.2019117 |
[7] |
Saul Mendoza-Palacios, Onésimo Hernández-Lerma. Stability of the replicator dynamics for games in metric spaces. Journal of Dynamics and Games, 2017, 4 (4) : 319-333. doi: 10.3934/jdg.2017017 |
[8] |
Miguel A. Dumett, Roberto Cominetti. On the stability of an adaptive learning dynamics in traffic games. Journal of Dynamics and Games, 2018, 5 (4) : 265-282. doi: 10.3934/jdg.2018017 |
[9] |
Ndolane Sene. Fractional input stability and its application to neural network. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 853-865. doi: 10.3934/dcdss.2020049 |
[10] |
Ying Sue Huang, Chai Wah Wu. Stability of cellular neural network with small delays. Conference Publications, 2005, 2005 (Special) : 420-426. doi: 10.3934/proc.2005.2005.420 |
[11] |
Mikko Salo. Stability for solutions of wave equations with $C^{1,1}$ coefficients. Inverse Problems and Imaging, 2007, 1 (3) : 537-556. doi: 10.3934/ipi.2007.1.537 |
[12] |
Yuanyuan Huang, Yiping Hao, Min Wang, Wen Zhou, Zhijun Wu. Optimality and stability of symmetric evolutionary games with applications in genetic selection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 503-523. doi: 10.3934/mbe.2015.12.503 |
[13] |
Jewaidu Rilwan, Poom Kumam, Onésimo Hernández-Lerma. Stability of international pollution control games: A potential game approach. Journal of Dynamics and Games, 2022, 9 (2) : 191-202. doi: 10.3934/jdg.2022003 |
[14] |
Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations and Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631 |
[15] |
Yaping Wu, Niannian Yan. Stability of traveling waves for autocatalytic reaction systems with strong decay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1601-1633. doi: 10.3934/dcdsb.2017033 |
[16] |
George Avalos. Strong stability of PDE semigroups via a generator resolvent criterion. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 207-218. doi: 10.3934/dcdss.2008.1.207 |
[17] |
Agissilaos G. Athanassoulis, Gerassimos A. Athanassoulis, Mariya Ptashnyk, Themistoklis Sapsis. Strong solutions for the Alber equation and stability of unidirectional wave spectra. Kinetic and Related Models, 2020, 13 (4) : 703-737. doi: 10.3934/krm.2020024 |
[18] |
Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure and Applied Analysis, 2014, 13 (5) : 2095-2113. doi: 10.3934/cpaa.2014.13.2095 |
[19] |
Miljana Jovanović, Vuk Vujović. Stability of stochastic heroin model with two distributed delays. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2407-2432. doi: 10.3934/dcdsb.2020016 |
[20] |
K Najarian. On stochastic stability of dynamic neural models in presence of noise. Conference Publications, 2003, 2003 (Special) : 656-663. doi: 10.3934/proc.2003.2003.656 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]