January  2017, 4(1): 1-23. doi: 10.3934/jdg.2017001

On repeated games with imperfect public monitoring: From discrete to continuous time

1. 

Department of Quantitative Economics, P.O.Box 616, 6200 MD Maastricht, The Netherlands

2. 

Center for Mathematical Economics, Bielefeld University, PO Box 10 01 31, 33 501 Bielefeld, Germany

* Corresponding author

Received  March 2016 Revised  November 2016 Published  November 2016

Motivated by recent path-breaking contributions in the theory of repeated games in continuous time, this paper presents a family of discrete-time games which provides a consistent discrete-time approximation of the continuous-time limit game. Using probabilistic arguments, we prove that continuous-time games can be defined as the limit of a sequence of discrete-time games. Our convergence analysis reveals various intricacies of continuous-time games. First, we demonstrate the importance of correlated strategies in continuous-time. Second, we attach a precise meaning to the statement that a sequence of discrete-time games can be used to approximate a continuous-time game.

Citation: Mathias Staudigl, Jan-Henrik Steg. On repeated games with imperfect public monitoring: From discrete to continuous time. Journal of Dynamics and Games, 2017, 4 (1) : 1-23. doi: 10.3934/jdg.2017001
References:
[1]

D. AbreuD. Pearce and E. Stacchetti, Toward a theory of discounted repeated games with imperfect monitoring, Econometrica, 58 (1990), 1041-1063.  doi: 10.2307/2938299.

[2]

C. Alos-Ferrer and K. Ritzberger, Trees and extensive forms, Journal of Economic Theory, 143 (2008), 216-250.  doi: 10.1016/j.jet.2007.11.002.

[3]

A. Bain and D. Crisan, Fundamentals of Stochastic Filtering Springer -Stochastic Modelling and Applied Probability, 2009. doi: 10.1007/978-0-387-76896-0.

[4]

B. Bernard and C. Frei, The folk theorem with imperfect public information in continuous time, Theoretical Economics, 11 (2016), 411-453, https://econtheory.org/ojs/index.php/te/article/view/20160411. doi: 10.3982/TE1687.

[5]

B. Biais, T. Mariotti, G. Plantin and J. -C. Rochet, Dynamic security design: Convergence to continuous time and asset pricing implications, The Review of Economic Studies, 74 (2007), 345-390, URL http://www.jstor.org/stable/4626144. doi: 10.1111/j.1467-937X.2007.00425.x.

[6]

P. Billingsley, Convergence of Probability Measures 2nd edition, Wiley Series in Probability and Statistics, 1999. doi: 10.1002/9780470316962.

[7]

P. Cardaliaguet, C. Rainer, D. Rosenberg and N. Vieille, Markov games with frequent actions and incomplete information, HEC Paris Research Paper No. ECO/SCD-2013-1007, (2013), 1–37, arXiv: 1307.3365v1, [math.OC]. doi: 10.2139/ssrn.2344780.

[8]

J. Cvitanić and J. Zhang, Contract Theory in Continuous-Time Models Springer Finance, 2013. doi: 10.1007/978-3-642-14200-0.

[9]

N. El KarouiD. Nguyen and M. Jeanblanc-Picqué, Compactification methods in the control of degenerate diffusions: Existence of an optimal control, Stochastics, 20 (1987), 169-219.  doi: 10.1080/17442508708833443.

[10]

S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence Wiley, New York, 1986. doi: 10.1002/9780470316658.

[11]

E. Faingold, Building a reputation under frequent decisions, 2008, Unpublished manuscript, Yale University.

[12]

D. Fudenberg and D. K. Levine, Limit games and limit equilibria, Journal of Economic Theory, 38 (1986), 261-279.  doi: 10.1016/0022-0531(86)90118-3.

[13]

D. Fudenberg and D. K. Levine, Continuous time limits of repeated games with imperfect public monitoring, A Long-Run Collaboration on Long-Run Games, (2008), 369-388.  doi: 10.1142/9789812818478_0017.

[14]

D. Fudenberg and D. K. Levine, Repeated games with frequent signals, Quarterly Journal of Economics, 124 (2009), 233-265.  doi: 10.1162/qjec.2009.124.1.233.

[15]

D. FudenbergD. K. Levine and E. Maskin, The folk theorem with imperfect public information, Econometrica, 62 (1994), 997-1039.  doi: 10.2307/2951505.

[16]

F. Gensbittel, Continuous-time limit of dynamic games with incomplete information and a more informed player, International Journal of Game Theory, 45 (2016), 321-352.  doi: 10.1007/s00182-015-0507-5.

[17]

I. I. Gihman and A. V. Skorohod, The Theory of Stochastic Processes Ⅲ Springer-Verlag, Berlin Heidelberg New York, 1979.

[18]

M. F. Hellwig and K. M. Schmidt, Discrete-time approximation of the Holmström-Milgrom model of intertemporal incentive provision, Econometrica, 70 (2002), 2225-2264.  doi: 10.1111/1468-0262.00375.

[19]

B. Holmström and P. Milgrom, Aggregation and linearity in the provision of intertemporal incentives, Econometrica, 55 (1987), 303-328.  doi: 10.2307/1913238.

[20]

J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes Springer Verlag -Grundlehren der Mathematischen Wissenschaften, Volume 288, Berlin, 1987. doi: 10.1007/978-3-662-02514-7.

[21]

O. Kallenberg, Foundations of Modern Probability 2nd edition, Springer, New York [u. a. ], 2002. doi: 10.1007/978-1-4757-4015-8.

[22]

H. Kushner, Numerical approximations for nonzero-sum stochastic differential games, SIAM Journal on Control and Optimization, 46 (2007), 1942-1971.  doi: 10.1137/050647931.

[23]

H. J. Kushner, Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems, Birkhäuser: System & Control: Foundations & Applications, 1990. doi: 10.1007/978-1-4612-4482-0.

[24]

H. J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time 2nd edition, Springer, New York, 2001. doi: 10.1007/978-1-4613-0007-6.

[25] G. J. Mailath and L. Samuelson, Repeated Games and Reputations: Long-Run Relationships, Oxford University Press, Oxford, 2006. 
[26]

P. Morando, Measures aleatoires, Seminaire de Probabilites, Lecture Notes in Mathematics, Spinger-Verlag, 3 (1969), 190-229.

[27]

A. Neyman, Stochastic games with short-stage duration, Dynamic Games and Applications, 3 (2013), 236-278.  doi: 10.1007/s13235-013-0083-x.

[28]

D. RosenbergE. Solan and N. Vieille, The MaxMin value of stochastic games with imperfect monitoring, International Journal of Game Theory, 32 (2003), 133-150.  doi: 10.1007/s001820300150.

[29]

Y. Sannikov, A continuous-time version of the principal-agent problem, Review of Economic Studies, 75 (2008), 957-984.  doi: 10.1111/j.1467-937X.2008.00486.x.

[30]

Y. Sannikov and A. Skrzypacz, The role of information in repeated games with frequent actions, Econometrica, 78 (2010), 847-882.  doi: 10.3982/ECTA6420.

[31]

Y. Sannikov, Games with imperfectly observable actions in continuous time, Econometrica, 75 (2007), 1285-1329.  doi: 10.1111/j.1468-0262.2007.00795.x.

[32]

H. Schättler and J. Sung, The first-order approach to the continuous-time principal agent problem with exponential utility, Journal of Economic Theory, 61 (1993), 331-371, URL http://www.sciencedirect.com/science/article/pii/S0022053183710720. doi: 10.1006/jeth.1993.1072.

[33]

L. K. Simon and M. B. Stinchcombe, Extensive form games in continuous time: Pure strategies, Econometrica, 57 (1989), 1171-1214.  doi: 10.2307/1913627.

[34]

M. Staudigl, On repeated games with imperfect public monitoring: Characterization of continuation payoff processes, 2014, URL http://www.mwpweb.eu/MathiasStaudigl/, Bielefeld University.

[35]

R. H. Stockbridge, Time-average control of martingale problems: Existence of a stationary solution, The Annals of Probability, 18 (1990), 190-205, URL http://www.jstor.org/stable/2244233. doi: 10.1214/aop/1176990944.

[36]

J. Warga, Optimal Control of Differential and Functional Equations Academic Press, 1972.

[37]

L. C. Young, Lectures on the Calculus of Variations and Optimal Control Theory W. B. Saunders, Philadelphia, 1969.

show all references

References:
[1]

D. AbreuD. Pearce and E. Stacchetti, Toward a theory of discounted repeated games with imperfect monitoring, Econometrica, 58 (1990), 1041-1063.  doi: 10.2307/2938299.

[2]

C. Alos-Ferrer and K. Ritzberger, Trees and extensive forms, Journal of Economic Theory, 143 (2008), 216-250.  doi: 10.1016/j.jet.2007.11.002.

[3]

A. Bain and D. Crisan, Fundamentals of Stochastic Filtering Springer -Stochastic Modelling and Applied Probability, 2009. doi: 10.1007/978-0-387-76896-0.

[4]

B. Bernard and C. Frei, The folk theorem with imperfect public information in continuous time, Theoretical Economics, 11 (2016), 411-453, https://econtheory.org/ojs/index.php/te/article/view/20160411. doi: 10.3982/TE1687.

[5]

B. Biais, T. Mariotti, G. Plantin and J. -C. Rochet, Dynamic security design: Convergence to continuous time and asset pricing implications, The Review of Economic Studies, 74 (2007), 345-390, URL http://www.jstor.org/stable/4626144. doi: 10.1111/j.1467-937X.2007.00425.x.

[6]

P. Billingsley, Convergence of Probability Measures 2nd edition, Wiley Series in Probability and Statistics, 1999. doi: 10.1002/9780470316962.

[7]

P. Cardaliaguet, C. Rainer, D. Rosenberg and N. Vieille, Markov games with frequent actions and incomplete information, HEC Paris Research Paper No. ECO/SCD-2013-1007, (2013), 1–37, arXiv: 1307.3365v1, [math.OC]. doi: 10.2139/ssrn.2344780.

[8]

J. Cvitanić and J. Zhang, Contract Theory in Continuous-Time Models Springer Finance, 2013. doi: 10.1007/978-3-642-14200-0.

[9]

N. El KarouiD. Nguyen and M. Jeanblanc-Picqué, Compactification methods in the control of degenerate diffusions: Existence of an optimal control, Stochastics, 20 (1987), 169-219.  doi: 10.1080/17442508708833443.

[10]

S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence Wiley, New York, 1986. doi: 10.1002/9780470316658.

[11]

E. Faingold, Building a reputation under frequent decisions, 2008, Unpublished manuscript, Yale University.

[12]

D. Fudenberg and D. K. Levine, Limit games and limit equilibria, Journal of Economic Theory, 38 (1986), 261-279.  doi: 10.1016/0022-0531(86)90118-3.

[13]

D. Fudenberg and D. K. Levine, Continuous time limits of repeated games with imperfect public monitoring, A Long-Run Collaboration on Long-Run Games, (2008), 369-388.  doi: 10.1142/9789812818478_0017.

[14]

D. Fudenberg and D. K. Levine, Repeated games with frequent signals, Quarterly Journal of Economics, 124 (2009), 233-265.  doi: 10.1162/qjec.2009.124.1.233.

[15]

D. FudenbergD. K. Levine and E. Maskin, The folk theorem with imperfect public information, Econometrica, 62 (1994), 997-1039.  doi: 10.2307/2951505.

[16]

F. Gensbittel, Continuous-time limit of dynamic games with incomplete information and a more informed player, International Journal of Game Theory, 45 (2016), 321-352.  doi: 10.1007/s00182-015-0507-5.

[17]

I. I. Gihman and A. V. Skorohod, The Theory of Stochastic Processes Ⅲ Springer-Verlag, Berlin Heidelberg New York, 1979.

[18]

M. F. Hellwig and K. M. Schmidt, Discrete-time approximation of the Holmström-Milgrom model of intertemporal incentive provision, Econometrica, 70 (2002), 2225-2264.  doi: 10.1111/1468-0262.00375.

[19]

B. Holmström and P. Milgrom, Aggregation and linearity in the provision of intertemporal incentives, Econometrica, 55 (1987), 303-328.  doi: 10.2307/1913238.

[20]

J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes Springer Verlag -Grundlehren der Mathematischen Wissenschaften, Volume 288, Berlin, 1987. doi: 10.1007/978-3-662-02514-7.

[21]

O. Kallenberg, Foundations of Modern Probability 2nd edition, Springer, New York [u. a. ], 2002. doi: 10.1007/978-1-4757-4015-8.

[22]

H. Kushner, Numerical approximations for nonzero-sum stochastic differential games, SIAM Journal on Control and Optimization, 46 (2007), 1942-1971.  doi: 10.1137/050647931.

[23]

H. J. Kushner, Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems, Birkhäuser: System & Control: Foundations & Applications, 1990. doi: 10.1007/978-1-4612-4482-0.

[24]

H. J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time 2nd edition, Springer, New York, 2001. doi: 10.1007/978-1-4613-0007-6.

[25] G. J. Mailath and L. Samuelson, Repeated Games and Reputations: Long-Run Relationships, Oxford University Press, Oxford, 2006. 
[26]

P. Morando, Measures aleatoires, Seminaire de Probabilites, Lecture Notes in Mathematics, Spinger-Verlag, 3 (1969), 190-229.

[27]

A. Neyman, Stochastic games with short-stage duration, Dynamic Games and Applications, 3 (2013), 236-278.  doi: 10.1007/s13235-013-0083-x.

[28]

D. RosenbergE. Solan and N. Vieille, The MaxMin value of stochastic games with imperfect monitoring, International Journal of Game Theory, 32 (2003), 133-150.  doi: 10.1007/s001820300150.

[29]

Y. Sannikov, A continuous-time version of the principal-agent problem, Review of Economic Studies, 75 (2008), 957-984.  doi: 10.1111/j.1467-937X.2008.00486.x.

[30]

Y. Sannikov and A. Skrzypacz, The role of information in repeated games with frequent actions, Econometrica, 78 (2010), 847-882.  doi: 10.3982/ECTA6420.

[31]

Y. Sannikov, Games with imperfectly observable actions in continuous time, Econometrica, 75 (2007), 1285-1329.  doi: 10.1111/j.1468-0262.2007.00795.x.

[32]

H. Schättler and J. Sung, The first-order approach to the continuous-time principal agent problem with exponential utility, Journal of Economic Theory, 61 (1993), 331-371, URL http://www.sciencedirect.com/science/article/pii/S0022053183710720. doi: 10.1006/jeth.1993.1072.

[33]

L. K. Simon and M. B. Stinchcombe, Extensive form games in continuous time: Pure strategies, Econometrica, 57 (1989), 1171-1214.  doi: 10.2307/1913627.

[34]

M. Staudigl, On repeated games with imperfect public monitoring: Characterization of continuation payoff processes, 2014, URL http://www.mwpweb.eu/MathiasStaudigl/, Bielefeld University.

[35]

R. H. Stockbridge, Time-average control of martingale problems: Existence of a stationary solution, The Annals of Probability, 18 (1990), 190-205, URL http://www.jstor.org/stable/2244233. doi: 10.1214/aop/1176990944.

[36]

J. Warga, Optimal Control of Differential and Functional Equations Academic Press, 1972.

[37]

L. C. Young, Lectures on the Calculus of Variations and Optimal Control Theory W. B. Saunders, Philadelphia, 1969.

[1]

Joon Kwon, Panayotis Mertikopoulos. A continuous-time approach to online optimization. Journal of Dynamics and Games, 2017, 4 (2) : 125-148. doi: 10.3934/jdg.2017008

[2]

Hanqing Jin, Xun Yu Zhou. Continuous-time portfolio selection under ambiguity. Mathematical Control and Related Fields, 2015, 5 (3) : 475-488. doi: 10.3934/mcrf.2015.5.475

[3]

Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic and Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187

[4]

Fritz Colonius, Guilherme Mazanti. Decay rates for stabilization of linear continuous-time systems with random switching. Mathematical Control and Related Fields, 2019, 9 (1) : 39-58. doi: 10.3934/mcrf.2019002

[5]

Shui-Nee Chow, Xiaojing Ye, Hongyuan Zha, Haomin Zhou. Influence prediction for continuous-time information propagation on networks. Networks and Heterogeneous Media, 2018, 13 (4) : 567-583. doi: 10.3934/nhm.2018026

[6]

J. C. Dallon, Lynnae C. Despain, Emily J. Evans, Christopher P. Grant. A continuous-time stochastic model of cell motion in the presence of a chemoattractant. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4839-4852. doi: 10.3934/dcdsb.2020129

[7]

Hui Meng, Fei Lung Yuen, Tak Kuen Siu, Hailiang Yang. Optimal portfolio in a continuous-time self-exciting threshold model. Journal of Industrial and Management Optimization, 2013, 9 (2) : 487-504. doi: 10.3934/jimo.2013.9.487

[8]

Andy Hammerlindl, Bernd Krauskopf, Gemma Mason, Hinke M. Osinga. Determining the global manifold structure of a continuous-time heterodimensional cycle. Journal of Computational Dynamics, 2022  doi: 10.3934/jcd.2022008

[9]

Ran Dong, Xuerong Mao. Asymptotic stabilization of continuous-time periodic stochastic systems by feedback control based on periodic discrete-time observations. Mathematical Control and Related Fields, 2020, 10 (4) : 715-734. doi: 10.3934/mcrf.2020017

[10]

Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 841-857. doi: 10.3934/dcdsb.2019192

[11]

Lakhdar Aggoun, Lakdere Benkherouf. A Markov modulated continuous-time capture-recapture population estimation model. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1057-1075. doi: 10.3934/dcdsb.2005.5.1057

[12]

Ping Chen, Haixiang Yao. Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching. Journal of Industrial and Management Optimization, 2020, 16 (2) : 531-551. doi: 10.3934/jimo.2018166

[13]

Zhigang Zeng, Tingwen Huang. New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays. Journal of Industrial and Management Optimization, 2011, 7 (2) : 283-289. doi: 10.3934/jimo.2011.7.283

[14]

Huai-Nian Zhu, Cheng-Ke Zhang, Zhuo Jin. Continuous-time mean-variance asset-liability management with stochastic interest rates and inflation risks. Journal of Industrial and Management Optimization, 2020, 16 (2) : 813-834. doi: 10.3934/jimo.2018180

[15]

Willem Mélange, Herwig Bruneel, Bart Steyaert, Dieter Claeys, Joris Walraevens. A continuous-time queueing model with class clustering and global FCFS service discipline. Journal of Industrial and Management Optimization, 2014, 10 (1) : 193-206. doi: 10.3934/jimo.2014.10.193

[16]

Haixiang Yao, Zhongfei Li, Xun Li, Yan Zeng. Optimal Sharpe ratio in continuous-time markets with and without a risk-free asset. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1273-1290. doi: 10.3934/jimo.2016072

[17]

Qian Zhang, Huaicheng Yan, Jun Cheng, Xisheng Zhan, Kaibo Shi. Fault detection filtering for continuous-time singular systems under a dynamic event-triggered mechanism. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022023

[18]

Do Sang Kim, Nguyen Ngoc Hai, Bui Van Dinh. Weak convergence theorems for symmetric generalized hybrid mappings and equilibrium problems. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 63-78. doi: 10.3934/naco.2021051

[19]

Lianju Sun, Ziyou Gao, Yiju Wang. A Stackelberg game management model of the urban public transport. Journal of Industrial and Management Optimization, 2012, 8 (2) : 507-520. doi: 10.3934/jimo.2012.8.507

[20]

Aleksandar Jović. Saddle-point type optimality criteria, duality and a new approach for solving nonsmooth fractional continuous-time programming problems. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022025

 Impact Factor: 

Metrics

  • PDF downloads (412)
  • HTML views (142)
  • Cited by (1)

Other articles
by authors

[Back to Top]