April  2017, 4(2): 87-96. doi: 10.3934/jdg.2017006

A simple family of solutions for forest games

1. 

CIMAT, A. C., Jalisco S/N, Valenciana, C.P. 36240, Guanajuato, Gto, México

2. 

UASLP, School of Economics, Av. Pintores S/N, Burócratas del Estado, C.P. 78213, San Luis Potosí, SLP, México

* Corresponding author: Tel. +52 473 73 27155, Ext 4991

Received  April 2016 Revised  December 2016 Published  March 2017

In this paper we study TU-games where the cooperation structure among the players is modeled by a forest. Using the classical component efficiency axiom and a generalized version of the component fairness axiom we obtain a family of solutions. We show that every solution in this family is based on a process of transfers among the players, and the average tree solution belongs to the family. Finally, we obtain a solution based on the degree of the nodes and we study a set of properties satisfied by this family.

Citation: Oliver Juarez-Romero, William Olvera-Lopez, Francisco Sanchez-Sanchez. A simple family of solutions for forest games. Journal of Dynamics and Games, 2017, 4 (2) : 87-96. doi: 10.3934/jdg.2017006
References:
[1]

R. J. Aumann and M. Maschler, Game theoretic analysis of a bankruptcy problem from the Talmud, J Econ theory, 36 (1985), 195-213.  doi: 10.1016/0022-0531(85)90102-4.

[2]

R. BaronS. BéalE. Rémila and P. Solal, Average Tree solutions and the distribution of Harsanyi dividends, Int. J. Game Theory, 40 (2001), 331-349.  doi: 10.1007/s00182-010-0245-7.

[3]

S. BéalA. LardonE. Rémila and P. Solal, The Average Tree solution for multi-choice forest games, Annals of Operations Research, 196 (2012a), 27-51.  doi: 10.1007/s10479-012-1150-1.

[4]

S. BéalE. Rémila and P. Solal, Weighted component fairness for forest games, Math Social Sci, 64 (2012b), 144-151.  doi: 10.1016/j.mathsocsci.2012.03.004.

[5]

K. BinmoreA. Rubinstein and A. Wolinsky, The Nash bargaining solution in economic modelling, The RAND Journal of Economics, (1986), 176-188.  doi: 10.2307/2555382.

[6]

P. HeringsG. van der Laan and D. Talman, The Average Tree solution for cycle-free graph games, Game Econ Behav, 62 (2008), 77-92.  doi: 10.1016/j.geb.2007.03.007.

[7]

P. HeringsG. van der LaanD. Talman and Z. Yang, The average tree solution for cooperative games with limited communication structure, Game Econ Behav, 68 (2010), 626-633.  doi: 10.1016/j.geb.2009.10.002.

[8]

M. O. Jackson, Allocation rules for network games, Game Econ Behav, 51 (2005), 128-154.  doi: 10.1016/j.geb.2004.04.009.

[9]

R. B. Myerson, Graphs and cooperation on games, Math Operations Res, 2 (1977), 225-229.  doi: 10.1287/moor.2.3.225.

[10]

L. S. Shapley, A value for n-person game Ⅱ, Annals of Mathematics Studies, (eds. Kuhn, H.W. and Tucker, A.W.), Princeton University Press, 28 (1953), 307-317. 

[11]

A. van den Nouweland, Games and graphs in economic situations Ph. D. thesis, Tilburg University, The Netherlands, 1993.

show all references

References:
[1]

R. J. Aumann and M. Maschler, Game theoretic analysis of a bankruptcy problem from the Talmud, J Econ theory, 36 (1985), 195-213.  doi: 10.1016/0022-0531(85)90102-4.

[2]

R. BaronS. BéalE. Rémila and P. Solal, Average Tree solutions and the distribution of Harsanyi dividends, Int. J. Game Theory, 40 (2001), 331-349.  doi: 10.1007/s00182-010-0245-7.

[3]

S. BéalA. LardonE. Rémila and P. Solal, The Average Tree solution for multi-choice forest games, Annals of Operations Research, 196 (2012a), 27-51.  doi: 10.1007/s10479-012-1150-1.

[4]

S. BéalE. Rémila and P. Solal, Weighted component fairness for forest games, Math Social Sci, 64 (2012b), 144-151.  doi: 10.1016/j.mathsocsci.2012.03.004.

[5]

K. BinmoreA. Rubinstein and A. Wolinsky, The Nash bargaining solution in economic modelling, The RAND Journal of Economics, (1986), 176-188.  doi: 10.2307/2555382.

[6]

P. HeringsG. van der Laan and D. Talman, The Average Tree solution for cycle-free graph games, Game Econ Behav, 62 (2008), 77-92.  doi: 10.1016/j.geb.2007.03.007.

[7]

P. HeringsG. van der LaanD. Talman and Z. Yang, The average tree solution for cooperative games with limited communication structure, Game Econ Behav, 68 (2010), 626-633.  doi: 10.1016/j.geb.2009.10.002.

[8]

M. O. Jackson, Allocation rules for network games, Game Econ Behav, 51 (2005), 128-154.  doi: 10.1016/j.geb.2004.04.009.

[9]

R. B. Myerson, Graphs and cooperation on games, Math Operations Res, 2 (1977), 225-229.  doi: 10.1287/moor.2.3.225.

[10]

L. S. Shapley, A value for n-person game Ⅱ, Annals of Mathematics Studies, (eds. Kuhn, H.W. and Tucker, A.W.), Princeton University Press, 28 (1953), 307-317. 

[11]

A. van den Nouweland, Games and graphs in economic situations Ph. D. thesis, Tilburg University, The Netherlands, 1993.

[1]

Meiling Yang, Yongsheng Li, Zhijun Qiao. Persistence properties and wave-breaking criteria for a generalized two-component rotational b-family system. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2475-2493. doi: 10.3934/dcds.2020122

[2]

Jibin Li. Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1719-1729. doi: 10.3934/dcdsb.2014.19.1719

[3]

Wenxia Chen, Jingyi Liu, Danping Ding, Lixin Tian. Blow-up for two-component Camassa-Holm equation with generalized weak dissipation. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3769-3784. doi: 10.3934/cpaa.2020166

[4]

Huijun He, Zhaoyang Yin. On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1509-1537. doi: 10.3934/dcds.2017062

[5]

Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459

[6]

Shouming Zhou, Shanshan Zheng. Qualitative analysis for a new generalized 2-component Camassa-Holm system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4659-4675. doi: 10.3934/dcdss.2021132

[7]

Pierre Cardaliaguet, Jean-Michel Lasry, Pierre-Louis Lions, Alessio Porretta. Long time average of mean field games. Networks and Heterogeneous Media, 2012, 7 (2) : 279-301. doi: 10.3934/nhm.2012.7.279

[8]

Congming Li, Eric S. Wright. Modeling chemical reactions in rivers: A three component reaction. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 377-384. doi: 10.3934/dcds.2001.7.373

[9]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

[10]

Yitong Guo, Bingo Wing-Kuen Ling. Principal component analysis with drop rank covariance matrix. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2345-2366. doi: 10.3934/jimo.2020072

[11]

Beatris Adriana Escobedo-Trujillo, José Daniel López-Barrientos. Nonzero-sum stochastic differential games with additive structure and average payoffs. Journal of Dynamics and Games, 2014, 1 (4) : 555-578. doi: 10.3934/jdg.2014.1.555

[12]

Beatris Adriana Escobedo-Trujillo, Alejandro Alaffita-Hernández, Raquiel López-Martínez. Constrained stochastic differential games with additive structure: Average and discount payoffs. Journal of Dynamics and Games, 2018, 5 (2) : 109-141. doi: 10.3934/jdg.2018008

[13]

Piotr Bogusław Mucha, Milan Pokorný, Ewelina Zatorska. Approximate solutions to a model of two-component reactive flow. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 1079-1099. doi: 10.3934/dcdss.2014.7.1079

[14]

Xinglong Wu. On the Cauchy problem of a three-component Camassa--Holm equations. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2827-2854. doi: 10.3934/dcds.2016.36.2827

[15]

Christian Klingenberg, Marlies Pirner, Gabriella Puppo. A consistent kinetic model for a two-component mixture with an application to plasma. Kinetic and Related Models, 2017, 10 (2) : 445-465. doi: 10.3934/krm.2017017

[16]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems and Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[17]

Chenghua Wang, Rong Zeng, Shouming Zhou, Bin Wang, Chunlai Mu. Continuity for the rotation-two-component Camassa-Holm system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6633-6652. doi: 10.3934/dcdsb.2019160

[18]

Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041

[19]

Yongsheng Mi, Chunlai Mu. On a three-Component Camassa-Holm equation with peakons. Kinetic and Related Models, 2014, 7 (2) : 305-339. doi: 10.3934/krm.2014.7.305

[20]

Dominique Duncan, Thomas Strohmer. Classification of Alzheimer's disease using unsupervised diffusion component analysis. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1119-1130. doi: 10.3934/mbe.2016033

 Impact Factor: 

Metrics

  • PDF downloads (46)
  • HTML views (56)
  • Cited by (0)

[Back to Top]