April  2017, 4(2): 149-173. doi: 10.3934/jdg.2017009

Nash and social welfare impact in an international trade model

1. 

Department of Mathematics and LIAAD-INESC, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687,4169-007 Porto, Portugal

2. 

IMPA, Instituto Nacional de Matemática Pura e Aplicada, Estrada Dona Castorina, 110, RJ 22460-320, Rio de Janeiro, Brasil

Received  December 2015 Revised  January 2017 Published  March 2017

We study a classic international trade model consisting of a strategic game in the tariffs of the governments. The model is a two-stage game where, at the first stage, governments of each country use their welfare functions to choose their tariffs either (ⅰ) competitively (Nash equilibrium) or (ⅱ) cooperatively (social optimum). In the second stage, firms choose competitively (Nash) their home and export quantities. We compare the competitive (Nash) tariffs with the cooperative (social) tariffs and we classify the game type according to the coincidence or not of these equilibria as a social equilibrium, a prisoner's dilemma or a lose-win dilemma.

Citation: Filipe Martins, Alberto A. Pinto, Jorge Passamani Zubelli. Nash and social welfare impact in an international trade model. Journal of Dynamics and Games, 2017, 4 (2) : 149-173. doi: 10.3934/jdg.2017009
References:
[1]

K. Bagwell and R. Staiger, A theory of managed trade, American Economic Review, 80 (1990), 779-795. 

[2]

K. Bagwell and R. Staiger, Enforcement, private political pressure, and the GAT/WTO escape clause, Journal of Legal Studies,, 34 (2005), 471-513. 

[3]

N. Banik, F. A. Ferreira, J. Martins and A. A. Pinto, An Economical Model for Dumping by Dumping in a Cournot Model, chapter in "Dynamics, Games and Science Ⅱ: DYNA 2008, in Honour of Maurício Peixoto and David Rand", editors: M. M. Peixoto, A. A. Pinto and D. A. Rand, pp. 141-154, Springer, 2011. doi: 10.1007/978-3-642-14788-3_11.

[4]

J. A. Brander, Intra-industry trade in identical commodities, Journal of International Economics, 11 (1981), 1-14. 

[5]

J. A. Brander and B. J. Spencer, Export subsidies and international market share rivalry, Journal of International Economics, 18 (1985), 83-100. 

[6]

J. I. BulowJ. D. Geanakoplos and P. D. Klemperer, Multi-market oligopoly: Strategic substitutes and complements, Journal of Political Economy, 93 (1985), 488-511. 

[7]

M. ChoubdarJ. P. Zubelli and A. A. Pinto, Nash and Social Welfare Impact in International Trade, Recent Advances in Applied Economics, Proceedings of the 6th International Conference on Applied Economics, Business and Development (AEBD'14) Lisbon, Portugal, (2014), 23-26. 

[8]

M. ChoubdarE. FariasF. A. Ferreira and A. A. Pinto, Uncertainty costs on an international duopoly with tariffs, Proceedings of the 6th International Conference on Applied Economics, Business and Development (AEBD'14) Lisbon, Portugal, (2014), 13-16. 

[9]

A. Dixit, International trade policy for oligopolistic industries, Economic Journal, 94 (1984), 1-16. 

[10]

A. Dixit, Strategic aspects of trade policy, in Bewley, T. (Editor), Advances in Economic Theory, Cambridge University Press, 329–362.

[11]

A. Dixit and G. Grossman, Targed export promotion with several oligopolistic industries, Journal of International Economics, 21 (1986), 233-249. 

[12]

G. Eaton and G. Grossman, Optimal trade and industrial policy under oligopoly, Quarterly Journal of Economics, 101 (1984), 383-406.  doi: 10.2307/1891121.

[13]

F. A. Ferreira, Applications of Mathematics to Industrial Organization, Ph. D. Thesis, Universidade do Porto, Portugal, 2007.

[14]

F. A. Ferreira, F. Ferreira, M. Ferreira and A. A. Pinto, Quantity competition in a differentiated duopoly, Chapter in J. A. Tenreiro Machado, Bela Patkai and Imre J. Rudas (Eds.): Intelligent Engineering Systems and Computational Cybernetics. Springer Science+Business Media B. V. , (2008), 365–374.

[15]

F. A. Ferreira, F. Ferreira and A. A. Pinto, Flexibility in Stackelberg leadership, Chapter in J. A. Tenreiro Machado, Bela Patkai and Imre J. Rudas (Eds.): Intelligent Engineering Systems and Computational Cybernetics, Springer Science+Business Media B. V. , (2008), 399–405.

[16]

F. A. Ferreira, F. Ferreira and A. A. Pinto, Bayesian price leadership, Chapter in Tas, K. et al. (eds.): Mathematical Methods in Engineering, Springer, Dordrecht, (2007), 371–379.

[17]

F. A. Ferreira, F. Ferreira and A. A. Pinto, Unknown costs in a duopoly with differentiated products, Chapter in Tas, K. et al. (eds.): Mathematical Methods in Engineering, Springer, Dordrecht, (2007), 359–369.

[18]

F. A. Ferreira, F. Ferreira and A. A. Pinto, Uncertainty on an asymmetric duopoly, Progress in Industrial Mathematics at ECMI 2006, Proceedings 14th European Conference on Mathematics for Industry, Madrid, Spain, July 10-14. Springer, Berlin (2006) to appear.

[19]

E. O'N. Fisher and C. A. Wilson, Price competition between two international firms facing tariffs, International Journal of Industrial Organization, 3 (1995), 67-87. 

[20]

R. Gibbons, A Primer in Game Theory, Pearson Prentice Hall, Harlow, 1992.

[21]

G. M. Grossman, Strategic export promotion: A critique, Chapter 3 in: Strategic Trade Policy and the New International Economics, P. R. Krugman (editor), MIT Press, Cambridge MA, (1986), 47–68.

[22]

G. V. Haberler, The Theory of International Trade with its Application to Commercial Policy, Macmillan, New York, 1937.

[23]

E. Helpman, Increasing Returns, Imperfect Markets, and Trade Theory, Jones, R. W. , Kenen, P. B. (eds.): Handbook of International Economics, 1 North Holland Press, Amesterdam, 1984, Chapter 7.

[24]

J. -M. M. Kilolo, Country Size, Trade Liberalization and Transfers, MPRA Paper, University Library of Munich, Germany, 2013.

[25]

K. Krishna, Trade restrictions as facilitating practices, Journal of International Economics, 26 (1989), 251-270. 

[26]

P.-C. Liao, Rivalry between exporting countries and an importing country under incomplete information, Academia Economic Papers, 32 (1990), 605-630. 

[27]

N. Limao and K. Saggi, Tariff retaliation versus financial compensation in the enforcement of international trade agreements, Journal of International Economics, 76 (2008), 48-60. 

[28]

N. Lim'ao and K. Saggi, Size inequality, coordination externalities and international trade agreements, y, coordination externalities and international trade agreements,, 63 (2013), 10-27. 

[29]

J. Martins, N. Banik and A. A. Pinto, A Repeated Strategy for Dumping, to appear in Discrete Dynamical Systems and Applications, ICDEA 2012, editors: Lluís Alseda, Jim M. Cushing, Saber Elaydi and A. A. Pinto, Springer. doi: 10.1007/978-3-662-52927-0_11.

[30]

J. Martins and A. A. Pinto, Deviation from collusion with and without dumping, to appear in Modeling, Dynamics, Optimization and Bioeconomics Ⅱ, editors: A. A. Pinto and D. Zilberman, Springer.

[31]

J. McMillan, Game Theory in International Economics, Harwood Academic Publishers, Chur, Switzerland, 1986. doi: 10.1080/00036846900000024.

[32]

A. A. Pinto, B. M. Oliveira, F. A. Ferreira and F. Ferreira, Stochasticity favoring the effects of the R & D strategies of the firms, Chapter in J. A. Tenreiro Machado et al. (Eds.): Intelligent Engineering Systems and Computational Cybernetics, Springer Science+Business Media B. V. , (2009), 415–423.

[33]

A. A. Pinto, B. M. Oliveira, F. A. Ferreira and F. Ferreira, Investing to survive in a duopoly model, Chapter in J. A. Tenreiro Machado et al. (Eds.): Intelligent Engineering Systems and Computational Cybernetics, Springer Science+Business Media B. V. , (2009), 407–414.

[34]

B. J. Spencer and J. A. Brander, International R & D rivalry and industrial strategy, Review of Economic Studies, 50 (1983), 707-722.  doi: 10.3386/w1192.

[35]

R. Staiger, International rules and institutions for trade policy, in: Grossman, Gene, Rogoff, Kenneth (Eds.): Handbook of international economics, vol. 3, Elsevier, North-Holland, 1495–1551.

show all references

References:
[1]

K. Bagwell and R. Staiger, A theory of managed trade, American Economic Review, 80 (1990), 779-795. 

[2]

K. Bagwell and R. Staiger, Enforcement, private political pressure, and the GAT/WTO escape clause, Journal of Legal Studies,, 34 (2005), 471-513. 

[3]

N. Banik, F. A. Ferreira, J. Martins and A. A. Pinto, An Economical Model for Dumping by Dumping in a Cournot Model, chapter in "Dynamics, Games and Science Ⅱ: DYNA 2008, in Honour of Maurício Peixoto and David Rand", editors: M. M. Peixoto, A. A. Pinto and D. A. Rand, pp. 141-154, Springer, 2011. doi: 10.1007/978-3-642-14788-3_11.

[4]

J. A. Brander, Intra-industry trade in identical commodities, Journal of International Economics, 11 (1981), 1-14. 

[5]

J. A. Brander and B. J. Spencer, Export subsidies and international market share rivalry, Journal of International Economics, 18 (1985), 83-100. 

[6]

J. I. BulowJ. D. Geanakoplos and P. D. Klemperer, Multi-market oligopoly: Strategic substitutes and complements, Journal of Political Economy, 93 (1985), 488-511. 

[7]

M. ChoubdarJ. P. Zubelli and A. A. Pinto, Nash and Social Welfare Impact in International Trade, Recent Advances in Applied Economics, Proceedings of the 6th International Conference on Applied Economics, Business and Development (AEBD'14) Lisbon, Portugal, (2014), 23-26. 

[8]

M. ChoubdarE. FariasF. A. Ferreira and A. A. Pinto, Uncertainty costs on an international duopoly with tariffs, Proceedings of the 6th International Conference on Applied Economics, Business and Development (AEBD'14) Lisbon, Portugal, (2014), 13-16. 

[9]

A. Dixit, International trade policy for oligopolistic industries, Economic Journal, 94 (1984), 1-16. 

[10]

A. Dixit, Strategic aspects of trade policy, in Bewley, T. (Editor), Advances in Economic Theory, Cambridge University Press, 329–362.

[11]

A. Dixit and G. Grossman, Targed export promotion with several oligopolistic industries, Journal of International Economics, 21 (1986), 233-249. 

[12]

G. Eaton and G. Grossman, Optimal trade and industrial policy under oligopoly, Quarterly Journal of Economics, 101 (1984), 383-406.  doi: 10.2307/1891121.

[13]

F. A. Ferreira, Applications of Mathematics to Industrial Organization, Ph. D. Thesis, Universidade do Porto, Portugal, 2007.

[14]

F. A. Ferreira, F. Ferreira, M. Ferreira and A. A. Pinto, Quantity competition in a differentiated duopoly, Chapter in J. A. Tenreiro Machado, Bela Patkai and Imre J. Rudas (Eds.): Intelligent Engineering Systems and Computational Cybernetics. Springer Science+Business Media B. V. , (2008), 365–374.

[15]

F. A. Ferreira, F. Ferreira and A. A. Pinto, Flexibility in Stackelberg leadership, Chapter in J. A. Tenreiro Machado, Bela Patkai and Imre J. Rudas (Eds.): Intelligent Engineering Systems and Computational Cybernetics, Springer Science+Business Media B. V. , (2008), 399–405.

[16]

F. A. Ferreira, F. Ferreira and A. A. Pinto, Bayesian price leadership, Chapter in Tas, K. et al. (eds.): Mathematical Methods in Engineering, Springer, Dordrecht, (2007), 371–379.

[17]

F. A. Ferreira, F. Ferreira and A. A. Pinto, Unknown costs in a duopoly with differentiated products, Chapter in Tas, K. et al. (eds.): Mathematical Methods in Engineering, Springer, Dordrecht, (2007), 359–369.

[18]

F. A. Ferreira, F. Ferreira and A. A. Pinto, Uncertainty on an asymmetric duopoly, Progress in Industrial Mathematics at ECMI 2006, Proceedings 14th European Conference on Mathematics for Industry, Madrid, Spain, July 10-14. Springer, Berlin (2006) to appear.

[19]

E. O'N. Fisher and C. A. Wilson, Price competition between two international firms facing tariffs, International Journal of Industrial Organization, 3 (1995), 67-87. 

[20]

R. Gibbons, A Primer in Game Theory, Pearson Prentice Hall, Harlow, 1992.

[21]

G. M. Grossman, Strategic export promotion: A critique, Chapter 3 in: Strategic Trade Policy and the New International Economics, P. R. Krugman (editor), MIT Press, Cambridge MA, (1986), 47–68.

[22]

G. V. Haberler, The Theory of International Trade with its Application to Commercial Policy, Macmillan, New York, 1937.

[23]

E. Helpman, Increasing Returns, Imperfect Markets, and Trade Theory, Jones, R. W. , Kenen, P. B. (eds.): Handbook of International Economics, 1 North Holland Press, Amesterdam, 1984, Chapter 7.

[24]

J. -M. M. Kilolo, Country Size, Trade Liberalization and Transfers, MPRA Paper, University Library of Munich, Germany, 2013.

[25]

K. Krishna, Trade restrictions as facilitating practices, Journal of International Economics, 26 (1989), 251-270. 

[26]

P.-C. Liao, Rivalry between exporting countries and an importing country under incomplete information, Academia Economic Papers, 32 (1990), 605-630. 

[27]

N. Limao and K. Saggi, Tariff retaliation versus financial compensation in the enforcement of international trade agreements, Journal of International Economics, 76 (2008), 48-60. 

[28]

N. Lim'ao and K. Saggi, Size inequality, coordination externalities and international trade agreements, y, coordination externalities and international trade agreements,, 63 (2013), 10-27. 

[29]

J. Martins, N. Banik and A. A. Pinto, A Repeated Strategy for Dumping, to appear in Discrete Dynamical Systems and Applications, ICDEA 2012, editors: Lluís Alseda, Jim M. Cushing, Saber Elaydi and A. A. Pinto, Springer. doi: 10.1007/978-3-662-52927-0_11.

[30]

J. Martins and A. A. Pinto, Deviation from collusion with and without dumping, to appear in Modeling, Dynamics, Optimization and Bioeconomics Ⅱ, editors: A. A. Pinto and D. Zilberman, Springer.

[31]

J. McMillan, Game Theory in International Economics, Harwood Academic Publishers, Chur, Switzerland, 1986. doi: 10.1080/00036846900000024.

[32]

A. A. Pinto, B. M. Oliveira, F. A. Ferreira and F. Ferreira, Stochasticity favoring the effects of the R & D strategies of the firms, Chapter in J. A. Tenreiro Machado et al. (Eds.): Intelligent Engineering Systems and Computational Cybernetics, Springer Science+Business Media B. V. , (2009), 415–423.

[33]

A. A. Pinto, B. M. Oliveira, F. A. Ferreira and F. Ferreira, Investing to survive in a duopoly model, Chapter in J. A. Tenreiro Machado et al. (Eds.): Intelligent Engineering Systems and Computational Cybernetics, Springer Science+Business Media B. V. , (2009), 407–414.

[34]

B. J. Spencer and J. A. Brander, International R & D rivalry and industrial strategy, Review of Economic Studies, 50 (1983), 707-722.  doi: 10.3386/w1192.

[35]

R. Staiger, International rules and institutions for trade policy, in: Grossman, Gene, Rogoff, Kenneth (Eds.): Handbook of international economics, vol. 3, Elsevier, North-Holland, 1495–1551.

Figure 1.  The Welfare Game Type: Green -$\textbf{L}_j\textbf{W}_i$; Red -PD; Yellow -$\textbf{L}_i\textbf{W}_j$
Table 1.  The Nash (Social) tariffs for the home quantities, total quantity in the market, inverse demand, custom revenue and custom surplus, resulting in a social equilibrium. $h$ -Home quantities; $Q$ -Aggregate quantity in each country; $p$ -Inverse demand; $CR$ -Custom revenue; $CS$ -Consumer surplus
SE game
Economic quantity $h$ $e$ $Q $ $p$ $CR$ $CS$
Nash (Social) tariff of country i $T_i$ 0 0 $T_i$ $T_i / 2 $ 0
Nash (Social) tariff of country j $T_j$ 0 0 $T_j$ $T_j/2$ 0
SE game
Economic quantity $h$ $e$ $Q $ $p$ $CR$ $CS$
Nash (Social) tariff of country i $T_i$ 0 0 $T_i$ $T_i / 2 $ 0
Nash (Social) tariff of country j $T_j$ 0 0 $T_j$ $T_j/2$ 0
Table 2.  Comparing total quantities of the two countries with Nash tariffs and social tariffs with different cost similarities and concluding the game type
Total quantities $(q_i,q_j)$ produced by the firms
Condition Nash tariffs Social tariffs Game type
If $2T_j < T_i$ $(T_i,T_j)$ $(0,0)$ $\textbf{L}_i\textbf{W}_j$
If $T_i/2 \leq T_j\leq 2T_i$ $(T_i,T_j)$ $(0,0)$ PD
If $2T_i <T_j$ $(T_i,T_j)$ $(0,0)$ $\textbf{L}_j\textbf{W}_i$
Total quantities $(q_i,q_j)$ produced by the firms
Condition Nash tariffs Social tariffs Game type
If $2T_j < T_i$ $(T_i,T_j)$ $(0,0)$ $\textbf{L}_i\textbf{W}_j$
If $T_i/2 \leq T_j\leq 2T_i$ $(T_i,T_j)$ $(0,0)$ PD
If $2T_i <T_j$ $(T_i,T_j)$ $(0,0)$ $\textbf{L}_j\textbf{W}_i$
Table 3.  Comparing profits of the firms of the two countries with Nash tariffs and social tariffs, where $H_i$ and $H_j$ are the tax-free home production indexes
Profits $(\pi_i,\pi_j)$ of the firms
Condition Nash tariffs Social tariffs Game type
If $H_i < 3/5$ $(T_i,T_j)$ $(0,T_j)$ $\textbf{L}_i\textbf{W}_j$
If $H_i > 3/5$ and $H_j > 3/5$ $(T_i,T_j)$ $(T_i,T_j)$ SE
If $H_j < 3/5$ $(T_i,T_j)$ $(T_i,0)$ $\textbf{L}_j\textbf{W}_i$
Profits $(\pi_i,\pi_j)$ of the firms
Condition Nash tariffs Social tariffs Game type
If $H_i < 3/5$ $(T_i,T_j)$ $(0,T_j)$ $\textbf{L}_i\textbf{W}_j$
If $H_i > 3/5$ and $H_j > 3/5$ $(T_i,T_j)$ $(T_i,T_j)$ SE
If $H_j < 3/5$ $(T_i,T_j)$ $(T_i,0)$ $\textbf{L}_j\textbf{W}_i$
Table 4.  Comparing welfares of the two countries with Nash tariffs and social tariffs where $H_i$ and $H_j$ are the tax-free home production indexes satisfying $0 < H_i < 2/3 < H_j < 1$
Welfares $(W_i,W_j) $ of the countries
Condition Nash tariffs Social tariffs Game type
$ H_j\geq 5/6 $ $( A_{W,i}, T_j)$ $(0,T_j)$ $\textbf{L}_i\textbf{W}_j$
$4/5< H_j< 5/6$ $(A_{W,i}, A_{W,j})$ $(0, B_{W_S,j})$ LW or PD
$H_j \leq 4/5$ $(A_{W,i}, A_{W,j})$ $(0,0)$ LW or PD
Welfares $(W_i,W_j) $ of the countries
Condition Nash tariffs Social tariffs Game type
$ H_j\geq 5/6 $ $( A_{W,i}, T_j)$ $(0,T_j)$ $\textbf{L}_i\textbf{W}_j$
$4/5< H_j< 5/6$ $(A_{W,i}, A_{W,j})$ $(0, B_{W_S,j})$ LW or PD
$H_j \leq 4/5$ $(A_{W,i}, A_{W,j})$ $(0,0)$ LW or PD
[1]

Sharon M. Cameron, Ariel Cintrón-Arias. Prisoner's Dilemma on real social networks: Revisited. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1381-1398. doi: 10.3934/mbe.2013.10.1381

[2]

Rafael Diaz, Laura Gomez. Indirect influences in international trade. Networks and Heterogeneous Media, 2015, 10 (1) : 149-165. doi: 10.3934/nhm.2015.10.149

[3]

Kashi Behrstock, Michel Benaïm, Morris W. Hirsch. Smale strategies for network prisoner's dilemma games. Journal of Dynamics and Games, 2015, 2 (2) : 141-155. doi: 10.3934/jdg.2015.2.141

[4]

Pau Erola, Albert Díaz-Guilera, Sergio Gómez, Alex Arenas. Modeling international crisis synchronization in the world trade web. Networks and Heterogeneous Media, 2012, 7 (3) : 385-397. doi: 10.3934/nhm.2012.7.385

[5]

Marta Biancardi, Lucia Maddalena, Giovanni Villani. Social norms for the stability of international enviromental agreements. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022046

[6]

Ethan Akin. Good strategies for the Iterated Prisoner's Dilemma: Smale vs. Markov. Journal of Dynamics and Games, 2017, 4 (3) : 217-253. doi: 10.3934/jdg.2017014

[7]

Maximiliano Fernandez, Javier Galeano, Cesar Hidalgo. Bipartite networks provide new insights on international trade markets. Networks and Heterogeneous Media, 2012, 7 (3) : 399-413. doi: 10.3934/nhm.2012.7.399

[8]

Jewaidu Rilwan, Poom Kumam, Onésimo Hernández-Lerma. Stability of international pollution control games: A potential game approach. Journal of Dynamics and Games, 2022, 9 (2) : 191-202. doi: 10.3934/jdg.2022003

[9]

Guowei Hua, Shouyang Wang, Chi Kin Chan, S. H. Hou. A fractional programming model for international facility location. Journal of Industrial and Management Optimization, 2009, 5 (3) : 629-649. doi: 10.3934/jimo.2009.5.629

[10]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[11]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics and Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[12]

Geir Evensen, Javier Amezcua, Marc Bocquet, Alberto Carrassi, Alban Farchi, Alison Fowler, Pieter L. Houtekamer, Christopher K. Jones, Rafael J. de Moraes, Manuel Pulido, Christian Sampson, Femke C. Vossepoel. An international initiative of predicting the SARS-CoV-2 pandemic using ensemble data assimilation. Foundations of Data Science, 2021, 3 (3) : 413-477. doi: 10.3934/fods.2021001

[13]

Akio Matsumoto, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5905-5923. doi: 10.3934/dcdsb.2021069

[14]

Yanxue Yang, Shou-Qiang Du, Yuanyuan Chen. Real-time pricing method for smart grid based on social welfare maximization model. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022039

[15]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics and Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[16]

Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091

[17]

Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A penalty method for generalized Nash equilibrium problems. Journal of Industrial and Management Optimization, 2012, 8 (1) : 51-65. doi: 10.3934/jimo.2012.8.51

[18]

Gary Froyland, Oliver Junge, Kathrin Padberg-Gehle. Preface: Special issue on the occasion of the 4th International Workshop on Set-Oriented Numerics (SON 13, Dresden, 2013). Journal of Computational Dynamics, 2015, 2 (1) : i-ii. doi: 10.3934/jcd.2015.2.1i

[19]

Serap Ergün, Bariş Bülent Kırlar, Sırma Zeynep Alparslan Gök, Gerhard-Wilhelm Weber. An application of crypto cloud computing in social networks by cooperative game theory. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1927-1941. doi: 10.3934/jimo.2019036

[20]

Elvio Accinelli, Bruno Bazzano, Franco Robledo, Pablo Romero. Nash Equilibrium in evolutionary competitive models of firms and workers under external regulation. Journal of Dynamics and Games, 2015, 2 (1) : 1-32. doi: 10.3934/jdg.2015.2.1

 Impact Factor: 

Metrics

  • PDF downloads (73)
  • HTML views (63)
  • Cited by (3)

[Back to Top]